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This paper develops a model of the optimal timing of interest rate changes. With fixed
adjustment costs and ongoing uncertainty, changing the interest rate involves the exercise
of an option. Optimal policy therefore has a “wait-and-see” component, which can be
quantified using option pricing techniques. We show that increased uncertainty makes the
central bank more reluctant to change its target interest rate, and argue that this helps
explain recent observed deviations from the Taylor Rule. An optimal wait-and-see policy
fits the target interest rates of the Fed and Bank of Canada better than the Taylor Rule.
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One possible FOMC strategy is to simply pocket the lower yields and continue to
wait-and-see on the U.S. economic outlook. James Bullard, Federal Reserve Bank
of St. Louis President, June 5, 2012 Speech.

1. INTRODUCTION

Interest rate adjustments occur at a lower frequency than macroeconomic data
releases. For example, Figure 1(a) plots the monthly US federal funds target rate
against the inflation rate. The frequency mismatch is apparent. Of course, in recent
years interest rates have remained at zero for standard liquidity trap reasons, but
rates exhibited inertia even before the financial crisis. Such inertia is not specific to
the US Federal Reserve. The same plot for the Bank of Canada (BoC), Figure 1(b),
shows that the BoC rates exhibit even more pronounced inertia.

There are several possible reasons why a central bank might be reluctant to
change interest rates. The most obvious reason is that there is some sort of cost
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1794 XIAOWEN LEI AND MICHAEL C. TSENG

FIGURE 1. US federal fund rate and Bank of Canada annual interest rate vs. inflation,
monthly data. (a) US federal fund rate vs. inflation. (b) Bank of Canada annual interest rate
vs. inflation.

to changing the interest rate. However, standard convex adjustment cost models
would not explain the observed long periods without change. Such models instead
generate continuous gradual adjustment. Another possibility is that inertia arises
for strategic reasons [see, e.g., Woodford (1999)]. Once again, however, strategic
inertia produces continuous adjustment. A third possibility is insufficient data,
as most national accounts data arrive only quarterly. Two facts run counter to
this explanation. First, highly relevant financial market data are now available at
virtually a continuous rate. Second, the plots in Figure 1 show that central banks
respond even more haltingly than the frequency at which data are released.

Another information-based explanation comes from the demand-side rather
than the supply-side. Perhaps, the Fed simply cannot process all the informa-
tion that is available. Therefore, “rational inattention” produces inertia. This is
also contradicted by the facts. First, standard linear-quadratic models of rational
inattention produce attenuated adjustments, not discrete adjustments [see Sims
(2010)]. Second, the Fed employs thousands of economists and data analysts,
whose primary job is to process data. Although rational inattention might be
a plausible explanation for a lone central banker, it seems less plausible when
applied to an entire institution of data-processing specialists. Finally, probably
the most common explanation is that wait-and-see is motivated by learning, i.e.,
the desire to reduce uncertainty. Despite its apparent plausibility, keep in mind
standard learning models produce continuous adjustment, or at least adjustment at
the same frequency at which the data are available. Even more problematic is the
prediction that learning should generate trends in the data. As learning gradually
reduces uncertainty, the central bank should become more willing to respond.
Such trends are not apparent in the data.

Although all of these factors are no doubt important parts of monetary policy,
they do not explain infrequent adjustment. Instead, in our view such inaction
signals the presence of a fixed cost to taking action. What is this cost? Clearly, it
is not a technical cost. The Fed could dictate a minute-by-minute target if it so
desired. One possibility arises from the fact that monetary policy decisions are not
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WAIT-AND-SEE 1795

made by a single individual, but by a committee. As anyone who has ever served
on a committee can attest, committee decision-making has costs. We focus on
the inertia induced by these costs. It is possible that committee decision-making
introduces inertia by itself, independent of option value considerations, which
arise from possible delays in reaching consensus.1 However, Blinder (2009) cites
evidence that it does not. Moreover, Blinder (2009) argues that such procedural
delays are likely to be relatively low in the case of US and Canadian monetary
policy, at least for the time period studied here, since they are both examples of
what he calls “autocratically collegial” committees, in which a single chairman
has a dominant influence.

The Federal Open Market Committee (FOMC) must meet at least four times
each year in Washington, D.C. Since 1981, eight regularly scheduled meetings
have been held each year at intervals of five to eight weeks. At each regularly
scheduled meeting, the committee votes on the policy to be carried out during the
interval between meetings. Other central banks have similar meeting schedules.
Although in theory the Fed can change rates between meetings, this rarely happens.
According to FOMC statements, since 2002, 47 out of 52 target rate changes
occurred at meeting times. Moreover, as the above plots reveal, it is not uncommon
for rates to remain unchanged following a meeting of the FOMC. This suggests
that there is more to infrequent adjustment than the costs of holding meetings.

In this paper, we take the presence of fixed costs as given, and study their
implications in a general equilibrium framework. We consider a continuous-time
version of the standard New Keynesian model, in which the central bank attempts
to balance inflation and output gap deviations. Without fixed costs, optimal policy
would produce a version of the Taylor Rule. Continuous evolution of macroeco-
nomic data would produce continuous interest rate adjustments. Our primary goal
is to show that the option value of waiting-to-see does not just explain infrequent
adjustment. If Taylor Rule predictions were simply wiggles around the implied
wait-and-see policy, the value added here would be second order. Instead, we
argue that an option value perspective introduces fundamentally new and impor-
tant considerations into policy, which help to explain several widely noted and
debated discrepancies between observed interest rates and Taylor Rule predictions.
In particular, we show that uncertainty becomes an important input into policy.
In contrast, standard Taylor Rule models are based on certainty-equivalence, and
therefore predict that uncertainty does not influence policy.2 Greater uncertainty
increases the option value of waiting. We argue that post-2001 in the United States
is a period with higher uncertainty than pre-2001, thus policy makers react with
more inertia in interest rate changes. In calibrating the model to US data, we find
that the implied fixed cost corresponds to an approximately 1.89% of additional
annual welfare loss.

Before proceeding, we note some important caveats to our analysis. First, al-
though the novelty here is to incorporate option value considerations into macroe-
conomic policy, these option values are no doubt present in the private sector as
well. In fact, studying these problems is where the analytical techniques were
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1796 XIAOWEN LEI AND MICHAEL C. TSENG

first developed [Dixit (1994), Stokey (2008)]. For simplicity, we assume that only
the policy maker faces fixed costs. There are reasons to believe, however, that
waiting-to-see could interact in mutually destructive ways if both the government
and the private sector have an option value to wait-and-see, especially if each side
lacks information about the other [Caplin and Leahy (1994)]. Second, the only
uncertainty in our model is that regarding the future values of exogenous shocks.
The central bank is fully informed about the underlying structural model and its
parameter values. As noted above, we doubt whether learning about parameters
would, by itself, explain observed inertia. However, if policy makers confront
more diffusive forms of uncertainty, in combination with fixed costs, this might
influence the implied option value of waiting-to-see [see, e.g., Miao and Wang,
Neng (2011) and Trojanowska and Kort (2010)].

The remainder of the paper is organized as follows. Section 2 relates our work on
optimal monetary policy to the real options literature and to recent debates about
Taylor Rule deviations. Section 3 derives a benchmark model without fixed costs of
adjustment, which is essentially a version of the Taylor Rule. Section 4 solves for
partial equilibrium, where the private sector’s expectation is exogenous. Section
5 proves that the central bank’s optimal policy is part of a rational expectation
equilibrium. Section 6 examines the properties of an optimal “wait-and-see” rule
with respect to parameter changes. Section 7 takes the model’s testable predictions
to both US Fed and BoC data and studies its quantitative implications. Section 8
discusses future research in this framework and concludes. The appendix contains
a technical proof for sufficiency of appropriate Euler equations for optimality in
terms of general stopping time problems.

2. LITERATURE REVIEW

Our study is motivated by recent debates about Taylor Rule deviations. Kahn
(2010) examines various versions of the Taylor Rule, and shows that although
a Taylor Rule matches federal funds target rate data well during 1980–1990s,
there are large deviations from it in recent years. In particular, policy appears to
have been too accommodative. Taylor (2014) argues that interest rate policy has
become less predictable, and that the central bank has been “keeping rates too
low for too long.” In addition, Woodford (1999) shows that the optimal nominal
interest rate rule should exhibit “inertia.” In our model, the central bank exhibits
a type of inertia different from that of Woodford. Here, higher inertia means the
central bank widens the “no-action” band in which it allows the state to drift
freely without applying interest rate adjustment. In contrast, Woodford shows
that the ability to precommit to an interest rate path introduces an autoregressive
component into the Taylor Rule. A larger autoregressive component corresponds to
higher inertia. The idea is that small adjustments in the same direction improve the
intertemporal trade-off between inflation and the output-gap [Rudebusch (2006)].
However, in practice, interest rates exhibit not only small adjustment but also large
shifts, and, more recently, periods of no adjustment. Such time series does not
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WAIT-AND-SEE 1797

have the typical sample path properties of an autoregressive process, suggesting
possible misspecification. Rather than tying the current interest rate to the last
adjustment via an autoregressive mechanism, in our model the central bank decides
whether to adjust based on the current state of the economy. In this “wait-and-see”
approach, apparent inertia arises from an option value. Periods of no adjustment
and occasional large shifts, unaccounted for in an autoregressive specification, are
naturally explained in our model by the central bank’s reluctance to exercise an
option.

In related work, Davig and Leeper (2008) and Svensson and Williams (2008)
compute optimal Markov switching rules in which a policy maker sets different
degrees of response to inflation depending on whether the state has crossed an
exogenous threshold. Alba and Wang (2017) and Murray et al. (2015) fit empir-
ical Markov switching models to US monetary policy. In these models, discrete
adjustment reflects a switch between two sets of Taylor Rules. In contrast, we
study optimal policy with endogenously set optimal thresholds. Our model is also
related to prior work on “sticky information.” For example, Mankiw and Reis
(2002) study the impact of discrete, optimally chosen, information updating on
the Phillips curve. However, their focus is on the firm’s side.

There has been considerable effort in bringing the real option effect into macroe-
conomic models [see, e.g., Froot and Obstfeld (1989), Dixit (1993), Dixit (1994),
and Stokey (2008)], which drives the key “wait-and-see” feature of our model.
The techniques that we employ are also used in the menu cost literature. When
firms face both first and second moment uncertainty about total-factor productiv-
ity, Bloom et al. (2012) show that uncertainty increases during recessions. The
nonconvexities together with time variation in uncertainty imply that firms become
more cautious in investing when uncertainty increases. Stokey (2016) develops
a model which shows that uncertainty about future tax policy induces firms to
temporarily stop investing. Both papers look at uncertainty from the firm side. A
recent paper that examines uncertainty from the policy side is Alvarez and Dixit
(2014), which analyzes the optimal timing of a break-up of the Euro zone using
a real options framework, with the private sector modeled in a reduced form way.
In contrast, our model casts a standard New Keynesian model into an impulse
control framework and remains in a general equilibrium setting where both the
central bank and private section have rational expectations.

3. MONETARY POLICY WITHOUT FIXED COSTS

We briefly recall the optimal monetary policy under discretion in the absence of
fixed costs. Assume time is discrete. Let πt denote inflation and xt denote the
output gap. The Phillips curve and the dynamic investment/saving (IS) curve in a
standard New Keynesian model, are

πt = κxt + βEt(πt+1) + ut , (1)
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1798 XIAOWEN LEI AND MICHAEL C. TSENG

and

xt = − 1

γ
[it − Et(πt+1) − r] + Et(xt+1), (2)

where γ is the household’s coefficient of risk-aversion, κ denotes the response of
inflation to an output shock, it is the nominal interest rate, and r is the natural
rate of interest, which is assumed to be constant here. The cost-push shock ut is
essential in our analysis. It represents the uncertainty the central banker is facing.

The central banker in our model conducts monetary policy with discretion, and
therefore has the myopic goal of minimizing the deviations of current inflation
and the output gap from target (normalized to zero).3 Without adjustment costs,
the central banker’s problem is a static one:

min
xt ,πt

1

2
(λx2

t + π2
t ), (3)

subject to
πt = κxt + vt , (4)

where vt ≡ βEt(πt+1)+ut , and λ is the weight put on the output gap.4 Assuming
ut is an AR(1) process with coefficient ρu, the optimal interest rate rule is given
by

i∗t = r + �iut , (5)

where �i = κγ (1−ρu)+λρu

κ2+λ(1−βρu)
. In the special case where ut follows a random walk, we

have �i = λ
κ2+λ(1−β)

. It is well known that, without fixed costs, a linear-quadratic
objective function implies certainty equivalence for the central bank’s problem.
Uncertainty plays no role in optimal monetary policy, and only the current state
matters. As expected, the optimal interest rate is linear and continuous in the cost
push shock. Under discretion, the output gap and inflation are also linear in the
cost-push shock. Thus, we can view this linear rule as a version of the Taylor Rule,
which will be compared with the central bank’s optimal rule from our model in
Section 4.

4. MODEL

We continue to assume the bank operates with discretion. The model is obtained
by taking continuous time limits of the previous two standard discrete time New
Keynesian equations [see, e.g., Galı́ (2009)]. Instead of solving a continuous-time
New Keynesian model from the outset [as is done, for example, in Fernández-
Villaverde et al. (2012)], we start by deriving discrete time counterpart, which
summarizes the private sector’s behavior under any policy, then take the continuous
time limit. Our New Keynesian continuous-time model admits analytic solutions,
using techniques from stochastic control.

Rational expectations require the private sector to form expectations of the
output gap and inflation that are consistent with central bank policy. Given such
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WAIT-AND-SEE 1799

expectations, the central bank chooses optimal monetary policy taking the private
sector’s expectations as given. The resulting optimal policy must then conform to
the private sector’s expectations. In discrete time, it is reasonable to conjecture
that the private sector’s expectations follow a martingale5:

Etπt+1 = πt , (6)

Etxt+1 = xt . (7)

In a discrete time setting, the private sector’s information set at time t includes
the current period interest rate. In our continuous-time model, the interest rate is
determined by the current state of the economy, which is evolving stochastically.
The kth adjustment ik happens at a random, rather than a deterministic, time τk .
Therefore, the continuous-time counterparts to the above conditions for stochastic
processes πt and xt are that, conditional on the central bank’s last adjustment, the
private sector’s expectation remains the same between interest rate adjustments:

E[πτ |τ ′, ik] = πτ ′ and E[xτ |τ ′, ik] = xτ ′ ,

where τ and τ ′ are any stopping times with τk+1 > τ ≥ τ ′ ≥ τk .6

Substituting (6) and (7) into (1) and (2), respectively, gives

xt = a1 ĩ + b1ut , (8)

πt = a2 ĩ + b2ut , (9)

where ĩ = ik − r for some k. The cost-push shock ut is exogenous and is modeled
by a Brownian motion.7

We derive a rational expectations equilibrium in which the central bank incor-
porates ex-ante assumptions about the private sector’s expectations into his cost
minimization problem. Then, variables xt and πt in the objective function in the
central bank’s problem can be summarized by a single state variable:

1

2
(λx2

t + π2
t ) = 1

2
[λ(a1 ĩ + b1ut )

2 + (a2 ĩ + b2ut )
2]

= 1

2
(λa2

1 + a2
2)ĩ

2 + (λb2
1 + b2

2)u
2
t + 2(a1b1λ + a2b2)ĩut

= 1

2
λ̃(ĩ − θut )

2 + λ2β(2 − β)

[λ(1 − β)2 + κ2]2
u2

t , (10)

where θ = λ(1−β)

λ(1−β)2+κ2 , and λ̃ = λa2
1 + 1.

Define zt ≡ ĩt − θut . Note that the second term in (10) is independent of
monetary policy. It is the efficiency loss that cannot be mitigated when adjusting
the interest rate. The first term implies a squared deviation of optimal interest
rate. Assuming the above assumption holds, we could derive the conjectured
coefficients a1 = β−1

κ
, b1 = − 1

κ
, a2 = −1, b2 = 0.
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Let K denote the fixed cost of adjustment. A discretionary policy maker’s
problem is to minimize the expected discounted sum of squared deviations of zt

and adjustment cost by choosing a sequence {τk, ik}, where τk and ik are the time
and size, respectively, of the kth adjustment. The central bank’s problem is then
to find

V (z0) = inf
τk,ik

Ez0

[∫ ∞

0
e−ρt

[
1

2
λ̃z2

t

]
dt +

∞∑
k=1

e−τkK

]
, (11)

where

• The expectation operator Ez0 [·] denotes expectation taken with respect to
the law of the shock process zt .

• The cost-push shock ut is assumed to follow a Brownian motion dut =
σdBt , where σ is the volatility of the process. Increasing σ increases the
uncertainty faced by the central bank.

• From (10), the summarized variable zt then evolves according to dzt =
−θσdBt = dut with initial state z0 almost surely.

• {τk} is a nondecreasing sequence of stopping times with respect to the natural
filtration {Ft } generated by dut . The timing of the kth adjustment, which is
a state-dependent random time τk , must be decided only using the central
bank’s information.

• Each ik , the size of kth adjustment, is a τk-measurable random variable. In
other words, the central bank determines the size of an adjustment using
information available at the (state-dependent random) time of adjustment.

• zτk
− zτ−

k
= iτk

− iτ−
k

. Since the cost-push shock is exogenous, changes in zt

correspond to changes in the interest rate.

Therefore, the central bank’s problem is to choose a random state-dependent
sequence of adjustment times based on information available, along with the
interest rate at those times. In the presence of a fixed cost K , continuous adjustment
is clearly suboptimal.

The central bank’s problem can be seen as a dynamic programming problem.
Define the “best adjustment operator” A, acting on bounded functions W : R →
R, by8

AW(z) = inf
i∈R

W(z − i) + K.

If V (z) is the central bank’s value function, then AV (z) is the resulting value
from the best possible interest rate adjustment, if an adjustment is made at state z.
Therefore, we must have

V (z) = inf
τ

Ez

[∫ τ

0
e−ρtf (zt )dt + e−ρτAV (zτ−)

]
,

where, for ease of notation, we put f (z) = 1
2 λ̃z2 and infτ denotes the infimum

over all finite stopping times. By optimality, V (z) ≤ AV (z) since the central bank
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WAIT-AND-SEE 1801

always has the choice of not exercising the option of adjusting. The central bank’s
problem can be therefore further rewritten as follows:

V (z) = inf
τ

Ez

[∫ τ

0
e−ρtf (zt )dt + e−ρτV (zτ−)

]
.

Assuming now that V (z) ∈ C2(R), i.e., is twice differentiable with continuous
second derivative and the infimum infτ is actually attained at a stopping rule τ ∗

given by an open region U ⊂ R, then applying Dynkin’s Formula to the right-hand
side gives9,10

V (z) = V (z0) + Ez

[∫ τ ∗

0
e−ρt

[
f (zt ) − ρV (zt ) + 1

2
V ′′(zt )θ

2σ 2

]
dt

]
. (12)

Therefore, the state space R is divided into two regions{
ρV = 1

2 λ̃z2 + 1
2V ′′θ2σ 2 on U

ρV < 1
2 λ̃z2 + 1

2V ′′θ2σ 2 on R\U.

The inaction region U is therefore characterized by the central bank’s first-order
condition11

ρV = 1

2
λ̃z2 + 1

2
V ′′θ2σ 2, (13)

between adjustment and nonadjustment of the interest rate. It states that the ex-
pected loss of a central banker’s value is equal to the sum of an immediate squared
deviation of optimal interest rate, and the expected rate of capital loss of holding
the option of not changing rates. Adjustment is applied immediately on R\U .

Conjecture now that U is an interval U = (a, b) for some a < b. On U ,
the first-order condition is an inhomogeneous ordinary differential equation with
general solution

V = Az2 + B1e
δ1z + B2e

δ2z + C,

with unknown constants A,B, δ1, δ2, and C. The constants A,B, δ1, δ2 are found
by matching coefficients as follows:

A = λ̃

2ρ
,C = λ̃θ2σ 2

2ρ2
, δ1,2 = ±

√
2ρ

θσ
. (14)

What remains is to solve for the free boundaries a and b, and to determine the
adjustment amount i once the boundary is reached. We note that that z − i = c

must lie in (a, b). Furthermore, to satisfy the C2 assumption on V in the above
derivation, it is necessary that V (a) = V (b) = V (c)−K , V ′(a) = V ′(b) = 0, and
V ′′(a) = V ′′(b) = 0. We prove in the appendix that the first two set of conditions

V (a) = V (b) = V (c) − K, (15)

V ′(a) = V ′(b) = 0, (16)
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1802 XIAOWEN LEI AND MICHAEL C. TSENG

are sufficient for V to be the value function by generalizing Dynkin’s Formula
beyond C2-functions. In other words, the optimizing central bank needs only to
satisfy continuity, (15), and an Euler equation, (16), on the adjustment thresholds.
The value function V is constant V = V (c) on R\(a, b). When facing a starting
state z0 ∈ R\(a, b), the central bank immediately adjusts the state to c. Given the
model’s symmetry, it is reasonable to guess that (a, b) is of the form (−S, S) and
c = 0. Using this guess, the Euler equations become

AS2 + B1e
δ1S + B2e

δ2S = B1 + B2 − K, (17)

2AS + B1δ1e
δ1S + B2δ2e

δ2S = 0, (18)

respectively. This is the same set of equations encountered in Dixit (1993). An
approximate analytical solution for the threshold S is

S∗ ≈
(

12θ2σ 2K

λ̃

)1/4

. (19)

This implies that a fixed cost K of fourth-order magnitude has first-order impor-
tance in determining the adjustment threshold, while uncertainty of second order
has first-order effects on inertia.

5. RATIONAL EXPECTATIONS

It is clear that the inflation process πt and the output process xt , under the central
bank’s optimal interest rate policy, are consistent with the private sector’s ex-
pectations. Indeed, recall that the private sector’s expectations regarding the two
processes satisfy a local martingale-type condition:

E[πτ |τ ′, ik] = πτ ′ and E[xτ |τ ′, ik] = xτ ′ ,

where τ and τ ′ are any stopping times with τk+1 > τ ≥ τ ′ ≥ τk . On the other
hand, under the central bank’s optimal policy,

xτ = a1ik + b1uτ , xτ ′ = a1ik + b1uτ ′

and
πτ = a2ik + b2uτ , πτ = a2ik + b2uτ ′ .

By Doob’s Optional Stopping Theorem [Lipster and Shiryayev (1989)], we have

E[xτ |τ ′, ik] = a1ik + b1uτ ′ = xτ ′

and

E[πτ |τ ′, ik] = a2ik + b2uτ ′ = πτ ′ .

Hence, expectations are confirmed.
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6. EXPECTED HITTING TIMES AND ADJUSTMENT

The properties of the optimal rule in our model shed some light on how different
uncertainty regimes contribute to monetary policy inertia.12 Given an arbitrary
initial point z, the expected time to the first such resetting is found by13

T (z) = S2 − z2

σ 2
. (20)

Expressed in terms of the endogenous threshold ±S∗ from equation (18), expected
hitting time is

T (z) =
√

12θ2K
λ̃

σ
− z2

σ 2
. (21)

The derivative of T (z) with respect to σ is

∂T (z)

∂σ
= 2(z2 − σ

√
3θ2K/λ̃)

σ 3
. (22)

Thus, the effect of uncertainty on expected hitting times depends on the current
state of the economy. There are two countervailing effects. On the one hand, given a
fixed threshold, a higher variance increases the probability that z hits the boundary,
so the expected hitting time decreases. On the other hand, increased uncertainty
also increases the optimal threshold, which makes the state less likely to reach
the threshold. In our case, when z2 < σ

√
3θ2K/λ̃, the first effect dominates, and

increased uncertainty decreases expected hitting times. This corresponds to the
case where the initial interest rate is nearly optimal, but if the economy is hit with
a severe negative shock, the central banker must react by immediately lowering
interest rate.14 If z2 > σ

√
3θ2K/λ̃, the second effect dominates, and increased

uncertainty would increase expected hitting time. This could be the scenario where,
given a mild level of inflation, the central banker would have increased the interest
rate during normal times, but is less likely to do so during a recession. The two
plots in Figure 1 show that both effects are present in the data. A large downward
adjustment usually corresponds to an unexpected recession followed by a longer
period of interest rate inertia. For example, consider the two recession periods of
the US economy during early 90’s and early 2000’s. In both the cases, the Fed
lowered target rates swiftly at first, then waited for a long period (15 months and
9 months, respectively) before further adjustments.

7. CALIBRATION

Our model has testable implications for observed interest rate targets. In particular,
we take our wait-and-see rule to US Fed and BoC interest rate data, and examine
whether the model can explain both the observed inertia and the timing of shifts in
rates. For the United States, monthly industrial production, inflation, and federal
funds rate data for the period October 1982 to July 2008 are obtained from the
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TABLE 1. Parametrization (monthly)

Description Notation Value

Risk aversion γ 0.5
Discount rate β 0.9967
Natural rate (United States) rUSA 0.2385%
Natural rate (Canada) rCanada 0.1570%
Sensitivity of inflation on output κ 0.0076
Weight on output deviation λ 1/2
Adjustment cost (Fed) KFed 0.0126
Adjustment cost (BoC) KBoC 0.1300
United States before 2001 volatility σl 0.0126%
United States after 2001 volatility σh 0.0242%
Canada volatility σ 0.0135%

Federal Reserve Bank of St. Louis website. Since monthly data on GDP are not
available, industrial production serves as a proxy for the output variable.15 To
compute potential monthly output, a Hodrick–Prescott filter with λ = 14,400 is
used.

Using the parameters reported in Table 1, we calibrate the model to the observed
federal funds target. The initial model interest rate is calibrated to match the actual
initial interest rate in the sample period. The risk aversion parameter γ is set
to be 0.5. The monthly discount factor β is 0.9967, to match an average annual
discount rate of 4%. We calibrate the natural interest rate r from the sample average
estimate in Holston et al. (2017) of United States from 1990 to 2007. A similar
sample average estimate is computed for Canada from 2007 to 2015. This gives
rUSA = 2.9% yearly, implying rUSA = 0.2385% monthly, and rCanada = 1.9%
yearly, implying rCanada = 0.1570% monthly. The weight on output deviation is
0.5. We take monthly κ = 0.0076 from Galı́ and Gertler (1999).16 We then break
the US data into two periods, before and after 2001, since we view the post-2001
period as being more volatile (e.g., the tech stock boom and bust, the 9/11 attack,
the financial crisis). The parameters σl and σh are then computed from the standard
deviation of the ut series in these two periods. The ut process is inferred from
output gap and inflation data, along with the Phillips curve and model-implied
private sector beliefs.17,18 To be more concrete, we know that the New Keynesian
Phillips curve gives us19

πt = κxt + βEt (πt+1) + ut . (23)

We also know from the model that Et(πt+1) = πt. Therefore, we can infer the
following cost shock process:

ut = (1 − β)πt − κxt . (24)
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TABLE 2. Mean-squared error,
percent

Central banks Model Taylor

US Fed 2.04 2.17
BoC 1.11 1.20

FIGURE 2. US: Model vs. Taylor Rule.

We then calibrate the adjustment cost K to match the weighted average interest
rate duration (weighted by its duration). With US data, this produces KFed =
0.0126. With Canadian data, this produces KBoC = 0.13. We will explain the
quantitative interpretation of this shortly. Figures 2 and 3 demonstrate how the
wait-and-see rule compares with the Taylor Rule. The main visual difference is
that our rule exhibits policy inertia and large discrete jumps.

The adjustment cost parameters KFed or KBoC can be translated to loss function
equivalents. K = 0.0126 implies a fixed cost of 1.26% standard deviation from
the steady state. The median interest rate duration in the United States is 8 months,
which implies the Fed changes rates about 1.5 times per year on average. There-
fore, the annual cost is approximately an extra 1.5%×1.26% = 1.89% of welfare
loss. Using the above parameters, we compare the goodness of fit of the Taylor
Rule and the wait-and-see rule: The result is shown in Table 2. The result that
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TABLE 3. Probability of leaving rates
unchanged

Central banks Actual Model Taylor

US Fed 0.5 0.8949 0
BoC 0.7410 0.9398 0

FIGURE 3. Canada: Model vs. Taylor Rule.

wait-and-see rule has a better overall fitness is also robust to alternative
parametrization of discount rate and elasticity of inflation to output parameter.

The previous results calibrate the adjustment cost K to match the weighted
average interest rate duration, and study the overall fitness. For a robustness
check, one can also calibrate K to minimize the mean-squared error between the
target rate and the model-implied interest rate, and study how well they match the
probability of interest rate change and the average size of interest rate changes.
This produces KFed = 0.017, and KBoC = 0.1 when keeping all other parameters
with the same value as Table 1. Tables 3–5 report the results.

We compare three statistics associated with the policy rule from our model and
the Taylor Rule.

(a) Probability of nonadjustment. Table 3 displays an obvious distinction be-
tween the Taylor Rule and the wait-and-see rule. The Taylor Rule produces a
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TABLE 4. Conditional average absolute per-
centage change of rates

Central banks Actual Model Taylor

US Fed 0.0531 0.1981 0.0676
BoC 0.1327 0.5843 0.1282

TABLE 5. Unconditional average absolute per-
centage change of rates

Central banks Actual Model Taylor

US Fed 0.0304 0.0208 0.0676
BoC 0.0344 0.0352 0.1282

zero probability of keeping rates constant, while our model generates a reasonable
probability of inaction. While it captures the possibility of not changing rates,
which the Taylor Rule cannot explain, the wait-and-see rule generates an inaction
probability that is larger than the data.

(b) Conditional average absolute percentage change of rates. Our model also
has implications for the magnitude of rate changes. To see this, we take the
absolute value of percentage change of rates conditional on changes occurring.
The absolute value is taken both due to the symmetry of our model, and because
the direction of change is not of immediate interest. We find that the wait-and-see
rule generates larger changes than in the data.

(c) Unconditional average absolute percentage change of rates. An arguably
better measure of overall fit is to consider the conjunction of the above two
statistics. That is, taking into the account both the probability of adjustment and
the magnitude of adjustment, we compute the unconditional average absolute
percentage change of rates. The last column in Tables 4 and 5 are the same,
since the probability of changing rates in the Taylor Rule is always one. However,
the wait-and-see rule outperforms the Taylor Rule in both the United States and
Canada. One can see that although the Taylor Rule matches the magnitude of
changes fairly well, its inability to capture the timing of rate shifts forces it to
produce a much larger deviation from the actual interest rate than the wait-and-see
rule.

8. CONCLUSION

This is the first paper to study the optimal timing of interest rate changes. By
combining uncertainty and adjustment costs, we are able to rationalize observed
interest rate jumps and inertia using a simple impulse control model. The model
is consistent with observed target interest rates of both the Fed and the BoC. By
focusing on the question of when to change interest rates as opposed to how much,
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our framework sheds light on the essential role that uncertainty plays in policy.
This motivates many possible directions for future research.

An immediate economic question is the welfare implications of a wait-and-see
monetary policy. Without adjustment costs, a discretionary central bank is able to
implement the first best outcome by minimizing output gap and inflation devia-
tions instantaneously. With adjustment costs, it is clear that output and inflation
deviations will persist, which generates potentially large efficiency losses.

Our technical framework admits several modifications and generalizations.
Rather than one discrete adjustment at a time, the central bank may switch between
regimes of continuous adjustment and no adjustment. The BoC time series in Fig-
ure 1(b) could very well reflect such a policy. To better match the level of interest
rates shown by data, the exogenous policy-independent cost-push shock could be
modeled by a more general Lévy process rather than Brownian motion.20 One
could also think about imposing a zero lower bound on interest rates. All such
extensions fall under the umbrella of general optimal stopping/option exercise
problems.

Of particular relevance is the question of how a zero lower bound would affect
the central bank’s policy in our model. A binding zero lower bound constrains the
central bank’s ability to react to shocks, since the only option would be an upward
adjustment at the zero lower bound. The central bank might alter its behavior
in response to this restriction. Near the zero lower bound, the inability, once the
bound is reached, to set a negative nominal rate makes the central banker more
sensitive to small negative shocks. The option of a large negative adjustment in
response to the next large negative shock is no longer available. As a preventive
measure, the central bank would apply downward adjustments more frequently
near the bound. Away from the bound, the potential loss that could occur at the
bound due to restricted ability to adjust could lead the central banker to make
positive adjustments larger than she would in our model when positive shocks
occur.

One could also argue that the central bank anticipates upturns and downturns
of the economy in setting monetary policy, rather than just reacting to changes
in uncertainty levels ex post. This could be addressed by a two-factor stochastic
volatility model, where volatility of the cost-push shock follows a stochastic
process, in the option exercise framework. The driving factor could be observable
or latent. A latent stochastic volatility factor is often argued to be a major concern
for monetary policy makers.

Also to be explored is the relationship between learning and a wait-and-see
policy. For example, if the natural interest rate is unobservable, waiting not only
brings the benefit of more information about the underlying shocks, but also refines
estimates of parameter values. One could also envision a model where the private
sector also faces fixed investment costs. Firms will delay investing due to policy
uncertainty, which then feeds back to more uncertainty by the policy maker. This
kind of feedback loop might be an impediment to recovery, with both the central
bank and the firm waiting-to-see about each other. Last, future research could
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WAIT-AND-SEE 1809

dig deeper into the way uncertainty is modeled here. For example, with fears of
model misspecification, the central bank might want to react more aggressively
with respect to the current state. So, it might be important to examine how a
preference for robustness would interact with the wait-and-see policy generated
from our baseline model.

NOTES

1. We thank an anonymous referee for pointing this out.
2. In fairness, some have argued that the Taylor rule is desirable not because it is optimal within

the context of a given model, but rather because it is robust to the presence of model uncertainty [see,
e.g., Rotemberg and Woodford (1999) and Levin and Williams (2003)].

3. Such preference is a second-order approximation of a constant relative risk aversion (CRRA)
household’s utility function, which is proved in Rotemberg and Woodford (1999) and Woodford (2003).

4. With discretion, the central bank cannot influence the private sector’s expectation in a systematic
way. Thus, he treats expectations as an exogenous process when conducting policy.

5. In general, we are not able to tell whether such expectations are unique. In fact, when banks’
interest rate threshold is fixed, the private sector could have highly nonlinear expectations, as demon-
strated by Davig and Leeper (2008). However, since we focus on an endogenous interest rate band
rather than endogenous expectation, studying a version of martingale expectation and verifying that it
is rational simplifies the analysis and helps us to focus on the model’s inertia predictions.

6. Recall that a filtration is an increasing sequence {Gt } of σ -algebras representing information
flow. The σ -algebra Gt , or information set at time t , contains events known up to time t . A stopping
time τ is a random variable such that τ−1(−∞, t] ∈ Gt for all t . A stopping time is therefore a random
time that is known to the agent at time t . In our context, this means that the timing of interest rate
adjustments that have occurred up to time t is known to the private sector at time t .

7. Evidence exists that inflation and output gap processes are persistent. In our model, this translates
to the choice of modeling the output gap and inflation as continuous-time random walks. Relaxing the
unit root restriction, one could allow for mean reversion. In continuous time, we can readily incorporate
more general cost-push shocks by using an Ornstein–Uhlenbeck process, a sum of Brownian motion
and a mean-reverting drift. Mean reversion in the cost-push shock would have two competing effects
on the central bank’s policy. The tendency of the process to revert to its long run mean makes the
central bank more reluctant to adjust. On the other hand, mean reversion makes the process stationary,
which in turn decreases central bank’s uncertainty, thereby increasing the frequency of adjustment.

8. More formally, A acts on bounded Borel-measurable functions on R.
9. The value function V , we construct below using smooth pasting, is actually not twice differen-

tiable. The appendix contains a proof why this derivation is nevertheless true.
10. Dynkin’s Formula is a classical result that generalizes the Fundamental Theorem of Calculus

V
(
z(τ )

) = V
(
z(0)

)+∫ τ
0 V ′(z(t))z′(t)dt from ordinary differential equations to Itô diffusions [Protter

(2004), p. 356].
11. The appendix shows the necessary first-order condition is in fact part of a sufficient condition,

as assumption (iii) of the theorem.
12. Incorporating stochastic volatility into our model, i.e., allowing the central bank to anticipate

possible changes in uncertainty regime, would retain the general adjustment/nonadjustment regions of
optimal policy. The nonadjustment region would depend on the specification of the volatility stochastic
process. Although a similar comparison between different specifications and their resulting policies
can be carried out, the simplifying assumption of an unanticipatory central bank highlights the effects
of uncertainty in our setting and unburdens the discussion from technicalities.

13. The hitting time distribution of Brownian motion can be derived using the strong Markov
property. See, for example, Dixit (1993).

14. Since the problem is symmetric, all the intuitions that follow also applies to a deflation shock.
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15. The early 80’s corresponded to a period where the Fed adopted a money supply target instead
of targeting the interest rate. Therefore, it is appropriate to set that period as the starting time of our
analysis.

16. Galı́ and Gertler (1999) estimate the quarterly Philips curve

πt = κqxt + βqEt(πt+1)

with κq = 0.023, where superscript q denotes the quarterly parameter. Using the martingale assumption
that πt = Et(πt+1), we have

πt = κq

1 − βq
xt = κ

1 − β
xt .

This relationship between xt and πt holds regardless of data frequency. Thus, we can back out monthly
κ by matching coefficients. With an annual discount rate of 4%, the implied monthly and quarterly
discount rates are β = 0.9967, and βq = 0.99, respectively. The implied monthly κ is 0.0076. For
robustness check, when we also take the alternative value of 5.355% as the annual discount rate, the
implied discount rates are βq = 0.9870, and β = 0.9956, with κ = 0.0078.

17. Not only do we assume that volatility before and after 2001 is different, we also assume it is
constant within each regime and not adapted to the central bank’s filtration. Therefore, the central bank
in our model cannot anticipate volatility changes ex ante. Incorporating stochastic volatility into the
central bank’s decision in our framework is a possible topic to be explored in detail in future research.
More detailed remarks on this possibility are given in Section 8.

18. Since the New Keynesian Phillips curve is widely used to study monetary policy, and our purpose
is not to test the Phillips curve, we condition on the validity of the model and identify cost-push shocks
using the model. This back-solving strategy is also used in The Conquest of American Inflation [Sargent
(1999)], where a series of residuals are inferred from the Phillips curve using observed data and the
initial conditions for the government’s beliefs.

19. For the sake of tractability, the volatility here is conservatively estimated by that of the cost-push
shock, which is relatively smooth. One might expect that, in a richer model with more shocks, e.g.,
financial shocks, differences in volatility during recessions and normal regimes would be even larger,
implying a stronger wait-and-see effect.

20. Lévy processes are continuous-time analogues of random walks, of which Brownian motion is
a special case [Barndorff-Nielsen et al. (2001)]. One example is the independent sum of a Brownian
motion and a compound Poission process. A general Lévy process can have infinitely many jumps
during a finite time interval.

21. The infinitesmal generator Lz of an Itô diffusion zt is the operator defined by, for f : Rn → R
sufficiently smooth, Lzf (z0) = lim�t→ Ez0 [f (z�t )]−f (z0)

�t
. For example, Lz of the cost-push shock

dzt = θσdBt is the second-order differential operator 1
2 θ2σ 2 d2

dz2 . For a central bank with value

function V , LzV (z0) = 1
2 θ2σ 2V ′′(z0) is therefore the expected marginal change of option value V

under the law of dzt with initial state z0. This term, plus the flow cost, appears in the central bank’s
first-order condition (13).

22. See, for example, Øksendal (1985).
23. See Theorem 5.4 in Littman et al. (1963).
24. The notion of distributional derivative generalizes the classical derivative to tempered distribu-

tions, or generalized functions [see Gel’fand and Vilenkin (2014)].
25. Our proof strategy is as follows: First observe that V is C2 except on a set of measure zero,

where smooth pasting is applied. Its classical second derivative, defined almost everywhere, is in fact
its distributional second derivative. Use the Sobolev Embedding Theorem to argue that the distribu-
tional second derivative can be well approximated by C2-functions. Apply Dynkin’s Formula to the
approximating C2-sequence and show that this is well behaved with respect to taking appropriate limit.

26. See, for example, Chapter 4 of Adams and Fournier (2003).
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APPENDIX

This section contains a proof that the derivation contained in Section 4 holds when the value
function V only satisfies the Euler equations, or so-called smooth pasting condition, rather
than being C2, i.e., twice differentiable with continuous second derivative. The difficulty
is that the classical Itô’s Lemma, and its corollary Dynkin’s Formula, is applicable only
for C2-functions. A value function V constructed via smooth pasting is clearly not C2

everywhere, in particular at points where the pasting is done. On its state space R, the
central bank’s value function V is only C1; differentiating twice, as was done in (12) in
Section 4, might not make sense. Here, we show that our results remain true nevertheless.
In addition to the current model, this formal argument is provided also with a view toward
extending our analysis to more general settings discussed in the Conclusion, such as one
where the central bank is allowed to switch between periods of continuous adjustment and
no adjustment, or is restricted by a zero lower bound, or faces a cost-push shock that is
a more general Lévy process with jumps, or a stochastic volatility model. In practice, our
theorem is a general verification theorem, i.e., one that provides a sufficient condition—the
Euler equation—for optimality.

We recall the following notation: For Rn-valued Itô diffusion zt with infinitesimal
generator Lz and a bounded domain W ⊂ Rn, consider the expectations operator
f (z) → Ez[

∫ τV

0 Lzf (zt )dt]21. If Ez[τV ] < ∞ for all z ∈ W , then a finite measure,
called the Green measure, can be defined on W by22
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∫
V

φ(z′)dμz(z
′) = Ez

[∫ τV

0
φ(zt )dt

]
, ∀φ ∈ C(W).

In other words, the Green measure μz is the length of time that zt , given the initial state
z, is expected to spend in W . In our model, the W of interest is the conjectured inaction
region (a, b) ⊂ R of the central bank.

If the differential operator Lz is uniformly elliptic on D, then for all z ∈ D, μz is
absolutely continuous with respect to Lebesgue measure, in which case we denote its
density by dμz(x

′) = G(z, z′)dz′. In fact, one has23

G(z, z′) ∈ L
q
loc(R

n), if q < 1 + n
2
,

where L
q
loc(R

n) denotes the Lebesgue space of functions with finite Lq -norm when restricted
to compact subsets.

As stated in Section 4, the central bank’s problem can be reduced to an optimal stopping
problem. Therefore, we prove sufficiency of the Euler equation in terms of the general
optimal stopping problem. Let g : Rn → R be Borel-measurable. The problem is to find

V (z) = inf
τ

Ez[g(zτ )],

where infτ denotes the infimum over all stopping times. In our context, g is the central
bank’s time discounted value function plus total flow cost due to deviations driven by the
cost-push shock.

THEOREM. Let V : Rn → R that satisfy the following conditions:

(i) There exists a region D ⊂ Rn with C1-boundary δD and V ∈ C2
b (R

n\δD).
(ii) h|D ≥ g|D . (Continuation)

(iii) Lzh = 0 on D, where Lz is the infinitesimal generator of zt . (First-order condition)
(iv) h|Rn−D = g|Rn−D and LXh ≤ 0 on Rn − D. (Noncontinuation)
(v) h ∈ C1(Rn). (Euler equation/C1-smooth pasting condition)

Then, V solves the optimal stopping problem, with the infimum being attained by the first
exit time of D.

Proof. Using Assumptions (i) (C1-boundary and C2 almost everywhere), and (v) (C1-
pasting), integration by parts shows that the second mixed partials δzi zj

h, defined almost
everywhere (outside δD), is the distributional second derivative of V .24,25

By the boundedness assumption on V [part of (i)] and existence of distribution deriva-
tives, V lies in the Lp-Sobolev space W 2,p for any p. Since C2(Rn) is dense in W 2,p , there
exists a sequence {fk} ⊂ C2(Rn), such that

‖fk − h‖W 2,p → 0.

On the other hand, by the Sobolev Embedding Theorem, if p > n
2 ,26

‖fk − h‖∞ → 0.

Now, Dynkin’s Formula holds for each fk , that is,

Ez[fk(zτ )] = fk(z) +
∫

V

Lzfk(z
′)G(z, z′)dz′.
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So,

lim
k→∞

Ez[fk(zτ )] = lim
k→∞

fk(z) + lim
k→∞

∫
V

Lzfk(z
′)G(z, z′)dz′.

Choose p > n
2 + 1, then its conjugate exponent q satisfies q < 1 + 2

n
. The boundedness

assumption means that the Sobolev norm can be approximated by the uniform norm:

lim
k→∞

fk(z) = V (z).

As a by-product, the approximating sequence {fk} can be chosen as regular, in the sense of
large p, to accommodate possible singularities of the Green density: by choice of {fk},

‖Lzfk(z
′) − LzV (z′)‖Lp → 0.

By Hölder’s inequality,

|
∫

V

Lzfk(z
′) − LzV (z′)G(z, z′)dz′| ≤ ‖Lzfk(z

′) − LzV (z′)‖Lp · ‖G(z, z′)‖Lq → 0.

(Strictly speaking, we have assumed D is compact, but this is without loss of generality).
So, for all z,

lim
k→∞

Ez[fk(zτ )] = V (z) +
∫

V

LzV (z′)G(z, z′)dz′.

By the Dominated Convergence Theorem,

Ez[V (zτ )] = lim
k→∞

Ez[fk(zτ )].

So, we have that a Dynkin’s Formula holds for V :

Ez[V (zτ )] = V (z) +
∫

W

LzV (z′)G(z, z′)dz′.

It follows that h is superharmonic locally on δD, therefore everywhere [see, Dynkin (1965),
p. 22]. This proves the theorem.
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