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et al. (2016). An empirically plausible increase in uncertainty can account for about half of 

the recent increase in top wealth shares. 
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1. Introduction 

It is well known that models of idiosyncratic labor income risk, in the tradition of Aiyagari (1994) , cannot explain ob-

served inequality. Although these models shed some light on the lower end of the wealth distribution, they cannot generate

sufficient concentrations of wealth in the right-tail Huggett (1996) . 1 In response, a more recent literature considers models

of idiosyncratic investment risk. These so-called ‘random growth’ models can generate the sort of power laws that charac-

terize observed wealth distributions. 2 

Although investment risk models are successful in generating empirically plausible wealth distributions, they suffer from

two drawbacks. First, existing applications focus on stationary distributions. However, what is notable about recent US wealth

inequality is that it has increased. This suggests that some parameter characterizing the stationary distribution must have

changed. It’s not yet clear what changed. Second, Gabaix et al. (2016) have recently shown that standard investment risk

models based on Gibrat’s Law cannot account for the rate at which inequality has increased. Top wealth shares have approx-

imately doubled over the past 35–40 years. Standard model parameterizations suggest that this increase should have taken

at least twice as long. 
� We would like to thank Evan Anderson, Jess Benhabib, Heejeong Kim, Ben Moll and Jun Nie for helpful comments. We are especially grateful to an 

anonymous referee for many useful suggestions. 
∗ Corresponding author. 

E-mail address: kkasa@sfu.ca (K. Kasa). 
1 Benhabib et al. (2017) note that models based on idiosyncratic labor income risk cannot generate wealth distributions with fatter tails than the distri- 

bution of labor income. 
2 The original idea dates back to Champernowne (1953) and Simon (1955) . Recent examples include Benhabib et al. (2011) and Toda (2014) . 

Gabaix (2009) provides a wide ranging survey of power laws in economics and finance. Benhabib and Bisin (forthcoming) survey their application to 

the distribution of wealth. 
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Our paper addresses both of these drawbacks. The key idea is to assume that agents confront (Knightian) uncertainty

when investing. Following Hansen and Sargent (2008) , agents have a benchmark model of investment returns. In standard

random growth models, agents fully trust their benchmark model. That is, they confront risk, not uncertainty. In contrast,

here agents distrust their model, in a way that cannot be captured by a conventional Bayesian prior. Rather than commit to

single model/prior, agents entertain a set of alternative models, and then optimize against the worst-case model. Since the

worst-case model depends on an agent’s own actions, agents view themselves as being immersed in a dynamic zero-sum

game. Solutions of this game produce ‘robust’ portfolio policies. To prevent agents from being unduly pessimistic, in the

sense that they attempt to hedge against empirically implausible alternatives, the hypothetical ‘evil agent’ who selects the

worst-case model is required to pay a penalty that is proportional to the relative entropy between the benchmark model

and the worst-case model. 

This is not the first paper to study robust portfolio policies. Maenhout (2004) applied Hansen–Sargent robust control

methods to a standard Merton-style consumption/portfolio problem. He showed that when the entropy penalty parameter

is constant, robust portfolio policies are nonhomothetic, i.e., portfolio shares depend on wealth levels. He went on to show

that homotheticity can be preserved if the penalty parameter is scaled by an appropriate function of wealth. Subsequent

work has followed Maenhout (2004) by scaling the entropy penalty, and thereby confining attention to homothetic portfolio

policies. 

Here the entropy penalty parameter is not scaled. The problematic long-run implications of nonhomotheticity are not an

issue, since we study an overlapping generations economy. If the coefficient of relative risk aversion exceeds one, robustness

concerns dissipate with wealth. As a result, wealthier agents choose to invest a higher fraction of their wealth in higher

yielding assets. 3 This produces a powerful inequality amplification effect. It also provides a novel answer to the question of

why inequality began increasing around 1980, not just in the US, but in many other countries as well. Many have argued

that the world became more ‘turbulent’ around 1980. Some point to increased globalization. Others point to technology.

Whatever the source, micro evidence supports the notion that individuals began to face greater idiosyncratic risk around

1980. 4 Given this, it seems plausible that idiosyncratic uncertainty increased as well. 5 

Idiosyncratic uncertainty also helps resolve the transition rate puzzle of Gabaix et al. (2016) . They show that models

featuring scale dependence, in which shocks to growth rates depend on the level of income or wealth, produce faster tran-

sition rates than traditional random growth models based on Gibrat’s Law. Robust portfolio policies induced by uncertainty

produce a form of scale dependence. Inequality dynamics are analytically characterized using the Laplace transform meth-

ods popularized by Moll and his co-authors. Although the model itself is nonlinear, this nonlinearity only arises when the

inverse of the entropy penalty parameter is nonzero. For small degrees of uncertainty the parameter is close to zero. This

allows us to employ classical perturbation methods to obtain approximate analytical solutions of the Laplace transform of

the Kolmogorov–Fokker–Planck (KFP) equation, which then yield approximations of the transition rates. 

To illustrate the quantitative significance of uncertainty induced inequality, we suppose the US economy was in a sta-

tionary distribution without uncertainty in 1980. Even without uncertainty wealth is concentrated at the top due to a com-

bination of investment luck and longevity luck. Assuming agents live/work on average about 40 years, the wealth share of

the top 1% is 24.3%, roughly equal to the observed 1980 share. Uncertainty is then injected into the economy by setting the

(inverse) entropy penalty parameter to a small nonzero value, while keeping all other parameters the same. This increases

the top 1% wealth share to 36.9%, close to its current value of about 40%. If this increased inequality had been generated by

a change in some other parameter, the transition rate at the mean level of wealth would be only 1.14%, implying a half-life

of more than 60 years. Thus, assuming the economy is currently at least 90% of the way to a new stationary distribution,

it should have taken 200 years to get here, rather than the observed 35–40 years! However, if increased inequality was

instead generated by increased uncertainty, the transition rate at the mean more than triples, to 3.85%. This reduces the

model implied transition time from 200 years to about 60 years; still longer than observed, but significantly closer. 

Aoki and Nirei (2017) also study the dynamics of wealth inequality in a Blanchard–Yaari OLG model. A portfolio composi-

tion effect is also the key force behind increased inequality in their model. However, their paper features several important

differences. First, they focus on income inequality rather than wealth inequality. Second, their model lacks a natural pertur-

bation parameter, so they resort to numerical solutions of the KFP equation. They find that if the variance of idiosyncratic

productivity shocks is calibrated to those of publicly traded firms, the model produces transition rates that are comparable to

those in the data. However, if privately held firms are included, which is more consistent with the model, transition rates are

too slow. Third, and most importantly, the underlying mechanism in their paper is different. They argue that reductions in

top marginal income tax rates were the trigger that produced increased inequality. In support, they cite Piketty et al. (2014) ,

who report evidence on top income shares and tax rates from 18 OECD countries for the period 1960–2010. They show that

countries experiencing the largest reductions in top marginal income tax rates also experienced the largest increases in top

income inequality. We do not dispute the role that tax policy likely played in growing inequality. However, an interesting

additional result in Piketty et al. (2014) is that if you split the sample in 1980, the link between taxes and inequality in-
3 Although there is widespread agreement that wealthier individuals earn higher average returns, it is not clear whether this reflects portfolio composi- 

tion effects, as here, or whether it reflects higher returns within asset categories. See below for more discussion. 
4 See, e.g., Gottschalk and Moffitt (1994) , Ljungqvist and Sargent (1998) and Kambourov and Manovskii (2009) . 
5 Note, here it is sufficient that agents perceive an increase in risk. The increase itself might not actually occur, but fears of its existence would still be 

relevant if they are statistically difficult to reject. 
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Fig. 1. Top 1% wealth share in the USA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

creases markedly. This is exactly what you would expect to find if increased uncertainty coincided with tax reductions in

1980. 6 

The remainder of the paper is organized as follows. Section 2 quickly reviews evidence on US wealth inequality.

Section 3 outlines the model. Section 4 compares the stationary distribution of wealth with and without uncertainty. Section

5 provides an approximate analytical characterization of the transition rate between these two distributions and compares it

to a numerical solution. Section 6 shows how detection error probabilities can be used to calibrate the entropy penalty pa-

rameter ( Anderson et al., 2003 ). Section 7 offers a few concluding remarks, while an Appendix provides proofs and outlines

an extension to recursive preferences. 

2. Motivation 

This paper focuses on wealth inequality. To focus on the role of uncertainty, it abstracts from all other sources of hetero-

geneity that contribute to inequality, including labor income heterogeneity. Hence, this section only presents evidence on

wealth inequality. 

Arguably the best current estimates of US wealth inequality come from Saez and Zucman (2016) . They combine data

from the Fed’s Survey of Consumer Finances with IRS data on capital income. Wealth estimates are computed by capitalizing

reported income data. Attempts are made to include the value of assets that do not generate capital income (e.g., pensions

and life insurance), but Social Security is excluded. The value of owner occupied housing is computed from data on property

taxes and mortgage interest payments. The major omission is human capital. One potential problem with this data is that

the methodology assumes rates of return within asset categories are identical across households. This can produce biased

estimates if returns are correlated with wealth within asset categories ( Fagereng et al., 2016b ). 7 

In principle, we could look at the entire cross-sectional distribution, but since current interest (and our model) are fo-

cused on the right-tail, Fig. 1 simply reports the top 1% wealth share. 

The most striking feature of this plot is the U-shaped pattern of top wealth shares. Wealth has always been concentrated

at the top, but top wealth shares actually declined from 1950–1980. This was part of much longer process that began during

WWI, which has been discussed by Piketty (2014) and others. Here we focus on the increase that began around 1980. From

its minimum of 23% in 1978, the top 1% wealth share has increased steadily ever since. By 2012 it had roughly doubled, to

42%. 

Who are these top 1%? In 2012, the top 1% consisted of the wealthiest 1.6 million families, with a minimum wealth of

about $4 million. Average wealth in this group is about $13.8 million. As noted by Saez and Zucman (2016) , wealth has

become even more concentrated than indicated by the conventional focus on the top 1%. The top 0.1% now own 22% of US
6 Kaymak and Poschke (2016) compare the roles of taxes and technologically-induced changes in wage inequality in accounting for recent US wealth 

inequality. They find that wage inequality is more important. However, to generate fat tailed wealth distributions with idiosyncratic labor income risk, they 

follow Castaneda et al. (2003) and introduce ‘awesome states’ in labor productivity. This procedure has been criticized by Benhabib et al. (2017) . 
7 Kopczuk (2015) discusses the pros and cons of the capitalization method. He notes that other estimation methods (e.g., those based on estate taxes) 

show a much more gradual increase in inequality. 
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wealth, more than triple its value in 1978. To belong to this exclusive club, one needs a minimum wealth of $20.6 million.

Although we focus on the top 1%, it should become clear below that our model would likely do even better at accounting

for the top 0.1%. 

It is of course debatable whether an economy is ever in a stationary equilibrium, but our basic modeling strategy here

is to suppose that the US economy was in such a state around 1980. We then ask whether an empirically plausible increase

in (Knightian) uncertainty could have produced the sort of rapid increase in inequality observed in Fig. 1 . To address this

question we need a model. 

3. The model 

The basic model here is the workhorse continuous-time Blanchard–Yaari OLG model. Benhabib et al. (2016) have recently

studied the implications of this model for wealth inequality in the absence of uncertainty (i.e., when agents fully trust

their models of asset returns). The key simplifying assumption, which makes the model so tractable, is that lifetimes are

exponentially distributed. This eliminates life-cycle effects. Unlike Benhabib et al. (2016) , we ignore bequests. Unintentional

bequests are not an issue, because another key simplifying assumption of the Blanchard–Yaari model is the existence of

perfectly competitive annuity markets. This allows agents to borrow and lend at a constant rate despite their mortality risk.

Of course, ignoring bequests is not innocuous when studying wealth inequality. Dynastic wealth accumulation undoubtedly

plays a role in observed wealth inequality. However, it is less clear whether the role of bequests has changed . If anything, it

has likely decreased ( Saez and Zucman, 2016 ). Since we are primarily interested in explaining the rapid rise in inequality, it

seems safe to ignore bequests. 

The economy is comprised of a measure 1 continuum of finitely-lived agents. Death occurs at Poisson rate, δ. Hence,

mean lifetimes are δ−1 . When an agent dies he is replaced by a new agent with wealth w 0 . This initial wealth can either

be interpreted as the capitalized value of expected (riskless) labor income or, following Benhabib et al. (2016) , as transfers

funded by capital income taxes. In the latter case, rates of return should be interpreted as net of taxes. The important point

is that w 0 is identical across all newborn agents. 

Agents can invest in three assets: (1) A risk-free technology. 8 The value of the risk-free asset follows the deterministic

process 

d Q = 

˜ r Qd t 

(2) Annuities issued by competitive insurance companies, with rate of return r . By no arbitrage and zero profits, r = ̃  r + δ.

Hence, agents devote all their risk-free investments to annuities. (3) A private/idiosyncratic risky technology. Agents are

assumed to share the following benchmark model for the returns on risky capital 

d S = μSd t + σ Sd B (3.1)

where μ is the common mean return, and σ is the common idiosyncratic volatility. The noise, dB , is an increment to a

standard Brownian motion, and is assumed to be uncorrelated across individuals. 

Again, the key departure point of this paper is to suppose that agents have doubts about their idiosyncratic invest-

ment opportunities. In other words, they confront ‘uncertainty’, not risk. By assumption, these doubts cannot be captured

by specifying a finite-dimensional Bayesian prior over alternative models. Instead, agents fear a broad spectrum of non-

parametric alternatives. These alternatives might reflect omitted variables or complicated nonlinearities. As emphasized by

Hansen and Sargent (2008) , we want agents to be prudent, not paranoid, so that they only hedge against models that could

have plausibly generated the historically observed data. To operationalize this, let q 0 t be the probability measure defined by

the Brownian motion process in the benchmark model (3.1) , and let q t be some alternative probability measure, defined by

some competing model. The (discounted) relative entropy between q t and q 0 t is then defined as follows: 9 

R (q ) = 

∫ ∞ 

0 

e −ρt 

[∫ 
log 

(
dq t 

dq 0 t 

)
dq t 

]
dt (3.2)

Evidently, R (q ) is just an expected log-likelihood ratio statistic, with expectations computed using the distorted probability

measure. It can also be interpreted as the Kullback–Leibler ‘distance’ between q t and q 0 t . From Girsanov’s Theorem we have 

∫ 
log 

(
dq t 

dq 0 t 

)
d q t = 

1 

2 

˜ E 

∫ t 

0 

| h s | 2 d s 

where ˜ E denotes expectations with respect to the distorted measure q t , and h s represents a square-integrable process that

is progressively measurable with respect to the filtration generated by q t . Again from Girsanov’s Theorem, we can view q t
8 This can be interpreted as a small open-economy assumption. 
9 See Hansen et al. (2006) for a detailed discussion of robust control in continuous-time models, and in particular, on the role of discounting in the 

definition of relative entropy. 
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as being induced by the following drift distorted Brownian motion 

10 

˜ B (t) = B (t) −
∫ t 

0 

h s ds 

which then defines the following conveniently parameterized set of alternative models 

dS = (μ + σh ) Sdt + σ Sd ̃  B 

Agents are assumed to have time-additive CRRA preferences. Each agent wants to construct robust consumption and

portfolio policies that perform adequately for all h ’s that lie within some convex set centered around the benchmark model

in (3.1) . To do this, agents enlist the services of a hypothetical ‘evil agent’, who is imagined to select models that minimize

their utility. That is, agents view themselves as being engaged in the following dynamic zero-sum game: 

V (w 0 ) = max 
c,α

min 

h 
E 

∫ ∞ 

0 

(
c 1 −γ

1 − γ
+ 

1 

2 ε 
h 

2 

)
e −(ρ+ δ) t dt (3.3) 

subject to 

dw = [(r + α(μ − r)) w − c + ασwh ] dt + αwσ · dB (3.4)

The parameters have their usual interpretations: w is the agent’s wealth; c is his rate of consumption; α is the share of

wealth invested in the risky technology; γ is the coefficient of relative risk aversion, and ρ is the rate of time preference.

The key new parameter here is ε. It penalizes the evil agent’s drift distortions. If ε is small, the evil agent pays a big cost

when distorting the benchmark model. In the limit, as ε → 0, the evil agent sets h = 0 , and agents no longer doubt their

risky technologies. Decision rules and the resulting equilibrium converge to those in Benhabib et al. (2016) . Conversely, as ε
increases, agents exhibit a greater preference for robustness. 

We can solve the robustness game using dynamic programming. Ito’s Lemma implies the Hamilton–Jacobi–Bellman equa-

tion can be written 

(ρ + δ) V (w ) = max 
c,α

min 

h 

{
c 1 −γ

1 − γ
+ 

1 

2 ε 
h 

2 + [(r + α(μ − r)) w − c + ασwh ] V 

′ (w ) + 

1 

2 

α2 σ 2 w 

2 V 

′′ (w ) 

}
(3.5) 

The first-order conditions deliver the following policy functions in terms of the unknown value function, V (w ) : 

h = −εσαwV 

′ (w ) (3.6) 

α = − (μ − r) V 

′ (w ) 

[ V 

′′ (w ) − ε(V 

′ (w )) 2 ] wσ 2 
(3.7) 

c = [ V 

′ (w )] −1 /γ (3.8) 

Even before solving the model, these policy functions reveal a lot about the equilibrium. First, notice that robustness

takes the form of pessimism , i.e., by (3.6) the drift distortion h is negative since α > 0 and V ′ (w ) > 0 . Second, notice that

the distortion increases with volatility ( σαw ). When volatility increases, it becomes statistically more difficult to rule out

alternative models. Third, notice that it is not a priori obvious how the magnitude of the distortion depends on wealth. If

V (w ) is concave, so that wealthier agents have a lower marginal utility of wealth, then (ceteris paribus) wealthier agents

will be less pessimistic. Having money in the bank allows you to relax. However, the volatility term offsets this. For a given

portfolio share, α, wealthier agents have more at stake. This makes them more worried, and triggers a greater preference for

robustness and a more pessimistic drift distortion. 11 This volatility effect will be reinforced if the first effect leads wealthier

agents to invest a higher fraction of their wealth in the risky technology. 12 

Turning to the portfolio policy in (3.7) , we can see that robustness in some sense makes the investor more risk averse, in

that it subtracts a positive term from V ′′ (w ) . However, as noted by Maenhout (2004) , unless the utility function is quadratic

( γ = −1 ) or logarithmic ( γ = 1 ), the resulting portfolio policy is nonhomothetic, and α will depend on w . Observe that the

implicit degree of risk aversion falls as w increases if V (w ) is concave, so that V ′ (w ) decreases with wealth. In the limit, as

V ′ (w ) → 0 , the preference for robustness completely dissipates, and the limiting portfolio is the same as when ε = 0 . Notice

that this portfolio is just the classic Merton portfolio 

α0 = 

μ − r 

γ σ 2 
(3.9) 

since one can readily verify that V (w ) ∼ w 

1 −γ in this case. Finally, notice that the consumption function in (3.8) is the

usual one. However, that does not mean uncertainty is irrelevant to saving decisions, since in general V (w ) will depend in

complicated ways on the value of ε. 
10 There are some subtleties here arising from the possibility that ˜ B and B generate different filtrations. See Hansen et al. (2006) for details. 
11 To quote Janis Joplin (or actually, Kris Kristofferson): ‘Freedom’s just another word for nothing left to lose’. 
12 Below we will show that this is the case if and only if γ > 1. 
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This analysis of the policy functions was premised on the properties of the unknown value function, V (w ) . To verify and

quantify these effects we must solve for V (w ) . To do so we first substitute the policy functions in (3.6) –(3.8) into the HJB

equation in (3.5) , and then solve the resulting second-order ODE. Unfortunately, the resulting equation is nonlinear, and

does not possess a known analytical solution. However, the fact that it does have a known analytical solution when ε = 0

opens the door to a classical perturbation approximation. That is, we look for a solution of the form 

13 

V (w ) = V 0 (w ) + εV 1 (w ) + O (ε 2 ) 

We know that V 0 (w ) will just be the standard Merton solution, V 0 (w ) = A 0 
w 

1 −γ

1 −γ , where A 0 is a complicated but well known

function of the underlying parameters. The V 1 (w ) function turns out to satisfy a linear ODE with a nonhomogeneous forcing

term given by V 0 (w ) . The results are given by 

Proposition 3.1. A first-order perturbation approximation of the value function for the HJB equation in (3.5) is given by 

V (w ) = A 0 
w 

1 −γ

1 − γ
+ εA 1 

w 

2(1 −γ ) 

2(1 − γ ) 
+ O (ε 2 ) (3.10)

with 

A 0 = 

[
1 

γ

(
ρ + δ − (1 − γ ) 

(
r + 

(μ − r) 2 

2 γ σ 2 

))]−γ

A 1 = 

1 

2 

[
σ 2 (α0 A 0 ) 

2 

r − A 

−1 /γ
0 

+ 

1 
2 
γ σ 2 α2 

0 
(1 + β) − (ρ + δ) /β

]

where β = 2(1 − γ ) and α0 is given by the nonrobust portfolio share in Eq. (3.9) . 

Proof. See online Appendix A. �

This result immediately yields the following corollary, which characterizes the policy functions: 

Corollary 3.2. First-order perturbation approximations of the optimal portfolio policy, α(w ) , and saving rate, s (w ) = 1 − c(w ) /w,

are given by 

α(w ) = α0 − εα0 

(
A 

2 
0 + (γ − 1) A 1 

γ A 0 

)
w 

1 −γ (3.11)

s (w ) = 1 − A 

−1 /γ
0 

+ ε 
1 

γ

(
A 

−1 /γ −1 
0 

A 1 

)
w 

1 −γ (3.12)

where α0 is the nonrobust portfolio policy in (3.9) , and ( A 0 , A 1 ) are constants defined in Proposition 3.1 . 

Proof. See online Appendix B. �

Notice that there are two cases when these policy functions are homothetic (i.e., independent of wealth). First, and

most obviously, is when ε = 0 . In this case, the agent has no doubts, and the model degenerates to the standard case of

risky investment, with no uncertainty. Second, when γ = 1 (i.e., preferences are logarithmic), the approximate decision rules

become independent of wealth. In this case, the saving rate assumes its usual Permanent Income value, s = 1 − (ρ + δ) .

Although the portfolio policy is homothetic, uncertainty still matters, but its effect is isomorphic to enhanced (constant)

relative risk aversion. It simply scales down the Merton portfolio share, α = α0 (1 − εA 0 ) . 

More generally, however, the portfolio share and saving rate depend on wealth. This dependence is the key mechanism

in our paper. Whether our model can quantitatively account for observed wealth inequality dynamics depends on the quan-

titative properties of these functions for plausible values of the parameters. 

3.1. Comment on units 

A convenient implication of homotheticity is that model parameterizations become independent of scale. Units do not

matter. Here that is not the case, so we must be a careful when selecting parameters. Notice that the key source of non-

homotheticity is the term εwV ′ (w ) . (In principle, α matters too, but its value is bounded between [0, 1]). This determines

the order of magnitude of the drift distortion. Later we discuss how detection error probabilities can be used to calibrate

this distortion. For now, just note that for a given empirically plausible drift distortion, the units of ε become linked to

those of w . For a given distortion, larger values of w can either increase or decrease wV ′ (w ) , depending on the value of γ .

Whichever way it goes, ε must move inversely so as to maintain the given drift distortion. Hence, the units of w are still

irrelevant as long as we are careful to adjust the magnitude of the penalty parameter appropriately. The only caveat is that

our perturbation approximation presumes a ‘small’ value of ε, so for given values of the remaining parameters, this puts

limits on the units of w . 
13 See Anderson et al. (2012) for a more sophisticated (and accurate) perturbation approximation to robust control problems. 
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3.2. Benchmark parameterization 

To illustrate the quantitative effects of model uncertainty on saving and portfolio choice the following benchmark pa-

rameter values are used. 

These parameters are discussed in more detail in the following section. For now it is sufficient to focus on γ , since it

determines the nature of the saving and portfolio policies. Empirical evidence yields a wide range of estimates, depending

on data and model specifics. However, most estimates suggest γ > 1. We set γ = 1 . 31 . Fig. 2 plots the resulting portfolio

policy: 

Later we shall see that it is more convenient when computing the cross-sectional wealth distribution to work in terms

of the natural log of wealth, so the horizontal axis plots log (w ) . Note that log wealth at birth is log (w 0 ) = log (100) ≈ 4 . 6 .

Hence, newborns invest about 65% of their wealth in the risky technology. If they are lucky, and their wealth grows, so

does their investment share in the risky technology. If log wealth increases to 7, implying a ten-fold increase in the level of

wealth, the investment share reaches 100%. 

Fig. 2 reveals the key feedback mechanism in our model. Wealth begets wealth because it leads agents to invest in higher

yielding technologies. 14 Notice, however, that inequality is not only a result of wealthy agents investing more than average

in higher yielding assets. The effect is symmetric, in that bad luck and low wealth makes agents pessimistic, which leads

them to hold most of their wealth in the safe asset. The very poorest agents invest only about 30% in the risky technology.

Our model therefore provides a novel explanation for why poor households hold most, if not all, of their wealth in safe

low-yielding assets. It is also broadly consistent with the empirical evidence in Carroll (2002) , who examines portfolio data

from the Survey of Consumer Finances for the period 1962–1995. He finds that the top 1% hold about 80% of their wealth

in risky assets, while the bottom 99% hold (on average) about 40%. (See his Table 4). 

The other force driving inequality is saving. Empirical evidence suggests wealthy households have higher saving rates

( Saez and Zucman, 2016 ). Wealth increasing saving rates also produce deviations from Gibrat’s Law, which amplifies in-

equality. Fig. 3 plots individual saving rates as a function of log wealth: 

Evidently, the model’s predictions along this dimension are counterfactual. Saez and Zucman (2016) report ‘synthetic’

saving rate estimates that increase with wealth. Dynan et al. (2004) also find increasing saving rates in a variety of US data

sets. Note that a saving rate that decreases with wealth actually reduces inequality, since poorer households save a larger

fraction of their wealth. What’s happening here is that, for a given portfolio allocation, wealthy agents are less pessimistic

and expect higher mean returns. Because the intertemporal elasticity of substitution (1/ γ ) is less than one, higher expected

returns reduce the savings rate, since the income effect dominates the substitution effect. This suggests that we could avoid

this problem by employing recursive preferences, which delivers a separation between risk aversion and intertemporal sub-

stitution. Online Appendix C outlines such an extension using a Duffie and Epstein (1992) aggregator with an intertemporal
14 From Eq. (3.11) and the expressions for ( A 0 , A 1 ) in Proposition 3.1 , we can see that A 0 > 0 whenever γ > 1. Hence, a sufficient condition for α′ (w ) > 0 

is that A 1 > 0. A necessary and sufficient condition for A 1 > 0 is that γ −1 [ r − (ρ + δ)] + 

1 
2 

ρ+ δ
γ −1 

+ 

1 
2 
σ 2 α2 

0 [3(1 − γ ) + 1] > 0 . A sufficient condition for this is 

that γ < 1.33. Alternatively, if γ > 1.33, then the condition will be satisfied if r ≥ ρ + δ and σ 2 is sufficiently small. 
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Table 1 

Benchmark parameter values. 

w 0 μ r δ σ 2 ρ γ ε

100 0.0586 0.044 0.026 0.0085 0.021 1.31 0.045 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

elasticity of substitution of one. It shows that for very similar parameter values to those in Table 1 , saving rates actually

increase with wealth. 15 

Together, Figs. 2 and 3 suggest that whether uncertainty amplifies inequality depends on the relative strength of the

portfolio effect versus the saving effect. In the following section we shall see that, at least for these parameter values, the

portfolio effect dominates, and uncertainty amplifies inequality. This result is perhaps not too surprising if you look closely

at Figs. 2 and 3 . Notice that the decline in saving is very mild. The poorest households save only a few tenths of a percent

more than the wealthiest. In contrast, the portfolio allocation effect is quite strong. 

The mechanism driving these portfolio and saving dynamics is a pessimistic drift distortion. Earlier it was noted that it

is not at all clear whether wealthy agents are more or less pessimistic in equilibrium. On the one hand, wealth provides

financial security, so wealthy agents can afford to be less robust. This effect operates via the decline in V ′ (w ) in the evil

agent’s policy function. On the other hand, greater financial security enables you to take on more risk. As a result, wealthier

agents have more to lose from model misspecification. This effect operates via the scaling term, αw, in the evil agent’s

policy function. The following result shows that for small values of ε the first effect dominates if γ > 1. 

Corollary 3.3. To a first-order approximation, the equilibrium distortion function, h (w ) , is increasing if and only if γ > 1 . 

Proof. Note that the portfolio effect on h (w ) is 2nd-order in ε. To a first-order approximation we can set α = α0 . Therefore,

we have (ignoring inessential constants) 

h (w ) ∼ −εwV 

′ (w ) 

Again, to a first-order approximation, we can ignore the εV 1 (w ) component of V (w ) . Hence, 

h (w ) ∼ −εwV 

′ 
0 (w ) = −εA 0 w 

1 −γ ⇒ h 

′ (w ) ∼ −ε(1 − γ ) w 

−γ

�

To interpret the h (w ) function it is convenient to map it into an implied drift distortion. Notice that if h (w ) is substituted

into the HJB equation in (3.5) the agent’s problem becomes equivalent to the standard one, but with an endogenous, wealth-

dependent, drift equal to μ + σh (w ) . Fig. 4 plots this implied drift distortion using the benchmark parameter values given

in Table 1 : 
15 Borovicka (2016) makes a similar point. He notes that long-run survival in models featuring heterogeneous beliefs depends on a delicate interplay 

between risk aversion, which governs portfolio choice, and intertemporal substitution, which governs saving. 
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Perhaps not surprisingly, the drift distortion mirrors the portfolio policy depicted in Fig. 2 . Agents begin life with a small

degree of pessimism, equivalent to about a 60 basis point negative drift distortion. However, if they are unlucky, and they

move into the left tail of the wealth distribution, their pessimism grows to more than a 1.0 percentage point negative drift

distortion. As seen in Fig. 2 , this is enough to nearly keep them out of the market. Hence, robustness generates something

like a ‘poverty trap’, in that pessimism and low wealth become self-fulfilling. 16 

3.3. Comment on preferences vs. environment 

Before turning to the aggregate implications of the model, we briefly comment on an identification issue. As noted by

Hansen et al. (2006) , from a mathematical perspective continuous-time robust control is just a special (nonhomothetic)

case of Duffie and Epstein (1992) Stochastic Differential Utility (SDU) preferences. For a constant value of ε, the two are

observationally equivalent. Following Hansen and Sargent (2008) , we prefer the robust control interpretation because it

views ε as an aspect of the environment, which is subject to change. It is changes in the distribution of wealth we are

attempting to explain. In contrast, SDU views ε as an attribute of preferences, and for the usual reasons, we prefer to think

of preferences as being time invariant. 

4. Stationary distributions 

This analysis thus far has focused on the problem and decision rules of a single agent. Our primary interest, however, is

on wealth inequality. To address this we must aggregate the individual wealth dynamics and compute the cross-sectional

distribution of wealth. The first step is to substitute the optimal policy functions into the individual’s budget constraint in

Eq. (3.4) . When doing this it is important to observe that, as in Hansen and Sargent (2008) , fears of model misspecification

are solely in the mind of the agent. The agent’s benchmark model is the true data-generating process, the agent just doesn’t

know it. Uncertainty still matters, however, because it influences behavior. 

It turns out to be mathematically convenient to work in terms of log wealth, x = log (w ) . Using Ito’s Lemma to translate

from w to x gives us: 

Proposition 4.1. To a first-order approximation in ε, individual log wealth follows the diffusion process 

dx = (a 0 + εa 1 e 
(1 −γ ) x ) dt + (b 0 + εb 1 e 

(1 −γ ) x ) dB (4.13)

with 

a 0 = r − A 

−1 /γ
0 

+ γ σ 2 α2 
0 −

1 

2 

b 2 0 
16 Note that if the aggregate economy exhibited growth, represented here as a steadily rising w 0 , then for a given ε pessimism would disappear from the 

economy, and so would the robustness-induced poverty trap. Hence, our model is more suited to explain the temporary effects of change in ε. 
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a 1 = 

γ A 1 A 

−1 /γ
0 

− (σγ α0 ) 
2 (A 

2 
0 + (γ − 1) A 1 ) 

A 0 γ 2 
− b 0 b 1 

b 0 = σα0 

b 1 = −σγα0 

[
A 

2 
0 + (γ − 1) A 1 

A 0 γ 2 

]

where ( A 0 , A 1 ) are constants defined in Proposition 3.1 and α0 is the nonrobust portfolio share defined in Eq. (3.9) . 

Proof. See online Appendix D. �

Notice that the drift and diffusion coefficients are constant when either ε = 0 or γ = 1 . Also notice that the exponential

terms in the coefficients damp to zero as wealth grows when γ > 1. However, when ( a 1 , b 1 ) < 0 this diminishing effect

implies that the mean growth rate and volatility of wealth are increasing in the level of wealth. 

Next, let f ( t , x ) be the time- t cross-sectional distribution of wealth. It obeys the following Kolmogorov–Fokker–Planck

(KFP) equation: 

∂ f 

∂t 
= −∂[(a 0 + εa 1 e 

(1 −γ ) x ) f ] 

∂x 
+ 

1 

2 

∂ 2 [(b 0 + εb 1 e 
(1 −γ ) x ) 2 f ] 

∂x 2 
− δ f + δζ0 (4.14)

where ζ 0 is a Dirac delta function at x 0 = log (w 0 ) . This is a linear PDE, which can be solved using (two-sided) Laplace

transforms. 

L{ f (x ) } ≡ F (t, s ) ≡
∫ ∞ 

−∞ 

f (t, x ) e −sx dx 

Applying the Laplace transform to Eq. (4.14) and dropping O ( ε2 ) terms yields the following approximation of the cross-

sectional wealth dynamics: 17 

∂F 

∂t 
= �(s ) F (t, s ) + ε�(s − β) F (t, s − β) + δe −sx 0 (4.15)

where β ≡ 1 − γ and 

�(s ) = 

1 

2 

b 2 0 s 
2 − a 0 s − δ (4.16)

�(s ) = b 0 b 1 s 
2 + (2 b 0 b 1 β − a 1 ) s + β(b 0 b 1 β − a 1 ) (4.17)

The �( s ) and �( s ) functions pick-up the derivatives of the KFP equation, since L{ f ′ (x ) } = sF (s ) and L{ f ′′ (x ) } = s 2 F (s ) . The

fact that derivatives are converted to a simple multiplication is what makes Laplace transforms so useful. This method is

less commonly applied to problems with variable coefficients, as is the case here, since the Laplace transform of the product

of two functions is not the product of their Laplace transforms. 18 However, the particular form of variable coefficients here,

which involves multiplication by an exponential function, is one case that works out nicely. In particular, the so-called ‘shift

theorem’ implies L{ e βx f (x ) } = F (s − β) . This result follows rather obviously from the definition of a Laplace transform after

a simple change of variables. 

The F (t, s − β) term on the right-hand side of (4.15) makes the KFP equation nonstandard. Later we shall obtain an

approximate solution by approximating the discrete shift with a derivative. For now, notice that in the nonrobust case,

when ε = 0 , the problem becomes entirely standard, and we get: 

Proposition 4.2. The nonrobust stationary distribution of log wealth is double exponential, with a mode at x 0 = log (w 0 ) , 

f (x ) = c 1 h (x 0 − x ) e φ1 x + c 2 h (x − x 0 ) e 
φ2 x (4.18)

where h ( ·) is the Heaviside (unit-step) function, and ( c 1 , c 2 ) are constants of integration chosen to ensure continuity at the switch

point, x 0 , and satisfaction of the adding-up constraint 
∫ ∞ 

−∞ 

f (x ) = 1 . The exponents ( φ1 , φ2 ) are the positive and negative roots,

respectively, of the quadratic �(s ) = 0 , where �( s ) is given by Eq. (4.16) . 

Proof. Since this result is standard, we merely sketch a proof. First, the Laplace transform of the stationary distribution

can be obtained by setting ∂ F /∂ t = 0 in Eq. (4.15) , and then solving the resulting algebraic equation for F ( s ). When ε = 0 ,

this just gives F (s ) = −δe −sx 0 / �(s ) . Next, we invert F ( s ) to get f ( x ). This can either be accomplished by expanding �(s ) −1

into partial fractions, and using the result that L 

−1 { (s − φ) −1 } = e φx , or by using contour integration and the residue cal-

culus, noting that the singularity in the left-half plane corresponds to x > 0, while the singularity in the right-half plane

corresponds to x < 0. �
17 Remember, as with moment-generating functions, which the Laplace transform generalizes, all the information about the cross-sectional distribution is 

contained in the transform. 
18 Instead, the Laplace transform of the convolution of two functions is the product of their Laplace transforms. 
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In applications one is really more interested in the distribution of the level of wealth. However, this distribution follows

immediately from the previous result: 

Corollary 4.3. In the nonrobust ( ε = 0 ) case, the stationary distribution of wealth is double Pareto 

f (w ) = c 1 h (w 0 − w ) w 

φ1 −1 + c 2 h (w − w 0 ) w 

φ2 −1 (4.19)

Proof. The Jacobian of the transformation from x to w is w 

−1 . �

The fact that the conventional (nonrobust) distribution of wealth is Pareto is no accident. This is a well documented

feature of the data, and the main attraction of constant parameter idiosyncratic investment risk models is that they quite

naturally generate a steady-state Pareto distribution. 19 The key parameter here is φ2 , 

φ2 = 

a 0 −
√ 

a 2 
0 

+ 2 δb 2 
0 

b 2 
0 

< 0 

As | φ2 | decreases, top wealth shares increase. Although values of φ2 ∈ [ −1 , 0) generate a stationary distribution, mean

wealth becomes infinite if | φ2 | ≤ 1, so we restrict parameters to satisfy the constraint | φ2 | > 1. The comparative statics of

this parameter are intuitive. For example, | φ2 | decreases as δ decreases. When people live longer, saving and portfolio deci-

sions become more important, and there is more time to accumulate wealth. | φ2 | also decreases when σ 2 increases, since

luck plays a role in generating inequality. 

The basic strategy for computing the robust stationary distribution is the same as above, but now the equation charac-

terizing this distribution is the more complicated functional equation 

�(s ) F (s ) + ε�(s − β) F (s − β) + δ = 0 (4.20)

Although a perturbation approximation with respect to ε seems natural, the distribution changes quite quickly, even for

ε ≈ 0, making a first-order approximation unreliable. This will become apparent later. So instead we approximate (4.20) by

converting it to an ODE in s , using β as a step-size. This presumes β is ‘small’, so that γ ≈ 1. Solving this ODE yields the

following result, 

Proposition 4.4. To a first-order approximation in β , the robust stationary distribution of log wealth is double exponential, with

a mode at x 0 = log (w 0 ) , 

f r (x ) = c 1 r h (x 0 − x ) e ψ 1 x + c 2 r h (x − x 0 ) e 
ψ 2 x (4.21)

where h ( ·) is the Heaviside (unit-step) function, and ( c 1 r , c 2 r ) are constants of integration chosen to ensure continuity at the

switch point, x 0 , and satisfaction of the adding-up constraint 
∫ ∞ 

−∞ 

f (x ) = 1 . The exponents ( ψ 1 , ψ 2 ) are the positive and negative

roots, respectively, of the quadratic 

ε + �(s ) + β�′ (s − β) = 0 

where �′ (s − β) is the derivative of the �( s ) function in (4.17) evaluated at (s − β). 

Proof. See online Appendix E. �

Hence, the question of how uncertainty influences wealth inequality has been distilled into the question of how ψ 2 

compares to φ2 . If | ψ 2 | < | φ2 |, then uncertainty leads to greater inequality. In general, there are two competing forces. On

the one hand, doubts create pessimism, which discourages investment, which in turn reduces the mean growth rate of

wealth for everyone . Lower mean growth reduces inequality. On the other hand, since pessimism depends on the level of

of wealth, this creates heterogeneity in the growth rate of wealth (or ‘scale dependence’ in the language of Gabaix et al.,

2016 ), and this heterogeneity increases inequality. It turns out that for reasonable parameter values the heterogeneity effect

dominates. 

Although it is not obvious from the statement of Proposition 4.4 , one can also show that the robust stationary distribution

satisfies the following correspondence principle, 

Corollary 4.5. As ε → 0, the robust stationary distribution in Eq. (4.21) converges pointwise to the nonrobust stationary distribu-

tion in Eq. (4.18) . 

Proof. See online Appendix F. �
19 Reed (2001) appears to have been the first to note that the combination of exponentially distributed lifetimes and idiosyncratic investment returns 

following geometric Brownian motions generates a double Pareto wealth distribution. Toda (2014) shows that this result is robust to a number of extensions, 

e.g., aggregate shocks, recursive preferences, endogenously determined interest rates, and heterogeneous initial wealth. However, he assumes homotheticity 

and wealth independent portfolio shares. 
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4.1. Top wealth shares 

It should be emphasized that Propositions 4.2 and 4.4 characterize the entire cross-sectional distribution of wealth. They

could be used to compute Gini coefficients, Theil/entropy indices, or any other inequality measure of interest. However, in

line with recent debate, we focus here on top wealth shares, in particular, on the top 1% wealth share. Given the stationary

distribution f ∞ 

(w ) , this is defined as follows 

top 1% share = 

∫ ∞ 

ˆ w 

w f ∞ 

(w ) dw ∫ ∞ 

0 w f ∞ 

(w ) dw 

where ˆ w solves 
∫ ˆ w 

0 f ∞ 

(w ) dw = . 99 . With a double Pareto distribution, these integrals can be computed analytically. This

yields, 

Lemma 4.6. Given a double Pareto distribution as in Eq. (4.19) , the top 1% wealth share is given by 

top 1% share = 

c 2 
ˆ w 

1+ φ2 

1+ φ2 

c 2 
w 

1+ φ2 
0 

1+ φ2 
− c 1 

w 

1+ φ1 
0 

1+ φ1 

(4.22)

where ˆ w = w 0 [ 1 + φ2 (. 99 / ̄c − 1 /φ1 ) ] 
1 /φ2 and c̄ = φ1 φ2 / (φ2 − φ1 ) . 

Standard (one-sided) Pareto distributions have a well known fractal nature, meaning that any given wealth share is a

scalar multiple of any other. For example, if one ignores the left-half of the above distribution, the top 0.1% share would

simply be 10 −φ−1 
2 

−1 as large as the top 1% share, while the top 10% share would be 
(

1 
10 

)−φ−1 
2 

−1 
larger. Evidently, wealth

shares implied by double Pareto distributions bear a (slightly) more complicated relationship to each other. 

4.2. Benchmark parameterization 

Here we plot and compare the stationary distributions for two economies. In the first, agents only confront idiosyncratic

risk, meaning ε = 0 . This distribution is assumed to describe the US economy in 1980. In the second, agents confront id-

iosyncratic ‘uncertainty’, meaning ε is set to a small positive value. This is the distribution toward which the US economy

has been gravitating. All the remaining parameters are set to the benchmark values displayed in Table 1 . 

As discussed earlier, initial wealth, w 0 , is arbitrary, as long as we are careful to adjust ε to maintain a ‘reasonable’ drift

distortion. (Later we discuss how we define reasonable, but Fig. 4 shows that it is only around 1%, even for the poorest

agents). We simply normalize initial wealth to w 0 = 100 . Moskowitz and Vissing-Jorgensen (2002) provide evidence from

the 1989 SCF on the distribution of private equity returns, and report a value of 6.9% for the median return, so we set

μ = 5 . 86% , to be conservative. The more important parameters are δ, σ 2 , and γ . It is natural to calibrate δ to the mean

work life, keeping in mind that this has been changing over time and that the model abstracts from important life-cycle

effects. We sim ply set δ = 0 . 026 , which implies a mean work life of about 38 years. 20 Calibrating σ 2 is more difficult. The

model is based on idiosyncratic investment risk, so using values from the stock market would be misleading. Benhabib and

Bisin (forthcoming) cite evidence on the returns to owner-occupied housing and private equity which suggest a standard

deviation in the range of 10-20%, so to be conservative we set σ = 9 . 2% . Finally, the basic mechanism in our paper hinges

on people becoming less pessimistic as they become wealthier. For this we need γ > 1. Fortunately, this is consistent with

a wide range of evidence. However, there is less agreement on the magnitude of γ . Asset market data imply large values.

However, as noted by Barillas et al. (2009) , these large values are based on models that abstract from model uncertainty.

They show that a modest amount of uncertainty can substitute for extreme degrees of risk aversion, and their argument

applies here as well. In addition, our approximate solution strategy presumes that 1 − γ is small, so we set γ = 1 . 31 . 

Fig. 5 displays the two distributions, using the results in Propositions 4.2 and 4.4 , 

The main thing to notice is that the robust distribution has a fatter right tail, reflecting greater wealth inequality. The

nonrobust distribution has a right-tail exponent of φ2 = −1 . 45 , whereas the robust distribution has a right-tail exponent of

ψ 2 = −1 . 28 . Using Lemma 4.6 we find that the top 1% share in the nonrobust economy is 24.3%, roughly equal to the actual

value in 1980 depicted in Fig. 1 . In contrast, the top 1% share in the robust economy is 36.9%, which represents a significant

increase, but is still 5 percentage points lower than the data. We could of course increase robust inequality to more closely

match recent data simply by increasing ε. We argue later that higher values of ε would still be plausible in terms of drift

distortions and detection error probabilities. However, higher values of ε start to produce implausible portfolio policies. We

should also note that the robust distribution comes somewhat closer to matching the growth in inequality in the extreme

right-tail which, according to Saez and Zucman (2016) , is where most of the action has been. They find that the share of

the top 0.1% increased from 7% in 1978 to 22% in 2012. Our model generates an increase from 11.9% to 22.3%. 

It is easier to visualize the extreme right tail using a log-log scale, as depicted in Fig. 6 . Since the distribution of log

wealth is exponential, these are simply linear. 
20 It should be noted that setting δ = 0 . 026 implies an implausibly large number of very old agents. For example, 7.4% of our agents are over 100 years old. 

Even worse, 0.55% are over 200! The natural way to avoid this counterfactual prediction is to introduce age-dependent death probabilities. Unfortunately, 



72 K. Kasa, X. Lei / Journal of Monetary Economics 94 (2018) 60–78 

log(w)
3 76.565.554.543.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Stationary Wealth Distributions

Robust

Fig. 5. Stationary distributions. 

log(w)
4 98.587.576.565.554.5

-7

-6

-5

-4

-3

-2

-1

0
Stationary log-log Wealth Distributions

Robust

Fig. 6. Stationary distributions: Log/Log scale. 

 

 

 

 

 

 

 

 

 

 

 

 

These plots extend to the top 0.1% in the nonrobust case (i.e., e −7 ≈ 0 . 001 ), and to the top 0.2% in the robust case

(i.e., e −6 ≈ 0 . 002 ). Since median wealth is about 111 in the nonrobust case, and about 123 in the robust case, these plots

suggest that the threshold top 0.2% individual is about 66 times wealthier than the median (i.e., e 9 = 8 , 103 ≈ 66 × 123 ).

For comparison, Saez and Zucman (2016) data shows that the threshold 0.1% individual is more than 400 times wealthier

than the median, whose wealth is about $50,0 0 0 (i.e., 20 . 6 mill / 50 , 0 0 0 = 412 ). Although a 0.2% threshold would produce a

smaller number, it seems safe to conclude that the model does not fully capture the extreme wealth levels that occur in the

extreme right tail of the US wealth distribution. This is not too surprising given that the model abstracts from labor income

inequality and bequests. 

Finally, it should also be observed that while the model sheds light on the right tail of the wealth distribution, it does less

well on the left tail. Actual wealth distributions are strongly skewed to the right, with a mode that is significantly smaller

than the median. In contrast, the above distributions are nearly symmetric. For example, in the robust case the median is

only 23% larger than the mode. Again, this is not too surprising, since the model abstracts from borrowing constraints and

other frictions that bind at low wealth levels. Still, it is noteworthy that the robust distribution is more skewed than the
nonrobust distribution. 

this would make the model much less tractable analytically. An alternative strategy would be to increase δ to reduce (though not eliminate) the number of 

Methuselahs, and then to offset the effects of this on inequality by incorporating bequests. 
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5. Transition dynamics 

As emphasized by Gabaix et al. (2016) (GLLM), rising inequality is not really a puzzle. A number of possible mechanisms

have been identified, for example, taxes, technology, globalization, and so on. Each of these can be interpreted as altering

one or more of the parameters of a standard random growth model, in way that generates empirically plausible increases

in inequality. However, GLLM show that if you just perturb the parameters of a standard random growth model, transition

rates are far too slow. This is especially true in the tails of the distribution, which converge at a slower rate. Hence, the real

puzzle is why inequality has increased so rapidly . 

GLLM argue that the key to resolving this puzzle is to consider deviations from Gibrat’s Law, which produce heterogene-

ity in mean growth rates or volatility. They outline two possibilities. The first features ‘type dependence’, in which there are

both high growth types and low growth types, with individuals experiencing (exogenous) stochastic switches between types.

Although type dependence seems like a plausible way to introduce heterogeneity into labor income dynamics, it seems less

persuasive as a description of heterogeneity in wealth dynamics. The second model they outline features ‘scale dependence’,

in which growth rates depend on the level of wealth or income. This seems better suited to wealth dynamics. They show

that scale dependence can be captured by simply adding an aggregate multiplicative shock to the Brownian motion de-

scribing individual log income or wealth. Interestingly, they show that scale dependence modeled in this way produces an

infinitely fast transition, since it produces an immediate jump in the Pareto exponent. 

Although increased uncertainty (as opposed to increased risk) provides an interesting and plausible explanation of the

rise in steady state inequality, its real advantage is to generate more rapid transition rates. It does this by producing a form

of scale dependence. In our model, wealth dependent pessimism generates wealth dependent portfolio policies, which in

turn generates wealth dependent growth rates. This form of scale dependence is more complicated than the simple multi-

plicative aggregate shock considered in GLLM, and so we do not obtain their simple and dramatic increase in transition rates.

Nevertheless, we now show that the scale dependence produced by nonhomothetic portfolio policies generates transition

rates that are much closer to the data than those of traditional random growth models. 

To characterize the transition rate the differential equation in (4.15) must be solved. Although this describes the evolution

of the Laplace transform, remember the Laplace transform embodies all the information in the distribution itself. In fact, it

does so in an especially revealing way. In particular, the convergence rate of F ( s ) at a particular value of (−s ) provides the

convergence rate of the (−s ) th moment of f ( x ). 21 Without uncertainty ( ε = 0 ), the solution of (4.15) is straightforward, and

is the same as in GLLM 

F (s, t) = 

[
F 0 ∞ 

(s ) − F 1 ∞ 

(s ) 
]
e �(s ) t + F 1 ∞ 

(s ) 

where F 0 ∞ 

(s ) is the Laplace transform of the initial stationary distribution and F 1 ∞ 

(s ) is the Laplace transform of the new

stationary distribution. Our model assumes the only parameter that changes is ε, so here some other parameter would have

to change so that F 0 ∞ 

(s ) 
 = F 1 ∞ 

(s ) . The convergence rate of the (−s ) th moment is just �( s ). Since our parameter values are

similar to those in GLLM, it is no surprise we get similar results when ε = 0 . For example, the rate of convergence of mean

wealth is 

�(−1) = −. 0114 

implying a half-life of 60 years! Convergence in the tails is even slower. 22 

Unfortunately, solution of Eq. (4.15) when ε 
 = 0 is more complicated. The exponential functions in the drift and diffusion

coefficients of (4.13) produce a discrete shift in the Laplace transform, so that both F ( s , t ) and F (s − β, t) appear on the

right-hand side of the differential equation. While a first-order perturbation approximation of the stationary distribution is

defensible, a first-order perturbation approximation of F ( s , t ) along the entire convergence path is more problematic, given

the discrete shift, which essentially creates a ‘singular perturbation’ problem. 

Our strategy for solving (4.15) is to approximate the discrete shift with a differential equation. This yields, 

∂F 

∂t 
= �(s ) F (t, s ) + ε�(s − β) 

[
F (t, s ) − β

∂F 

∂s 

]
+ δe −sx 0 (5.23)

where β ≡ 1 − γ . Note this is a partial differential equation. However, it is amenable to a standard separation of variables

approach. In particular, we posit a solution of the form, 

F (s, t) = H(t) G (s ) + F ∞ 

(s ) 

and obtain separate ODEs for H ( t ) and F ∞ 

( s ). Solving the ODE for F ∞ 

( s ) produces the stationary distribution, character-

ized in Proposition 4.4 . Solving the ODE for H ( t ) then gives us the convergence rate. The G ( s ) function is determined by

boundary conditions, and it turns out to be G (s ) = F 0 ∞ 

(s ) − F 1 ∞ 

(s ) , where F 0 ∞ 

(s ) is the Laplace transform of the initial sta-

tionary distribution (given in Propoistion 4.2 ), and F 1 ∞ 

(s ) is the Laplace transform of the new stationary distribution (given

in Proposition 4.4 ). We relegate the details to the Appendix, and merely state the following result 
21 The minus sign derives from the fact that we defined the Laplace transform as 
∫ ∞ 
−∞ f (x ) e −sx dx, while a moment-generating function is defined as ∫ ∞ 

−∞ f (x ) e sx dx . 
22 Unless | φ2 | > 2, the variance does not exist. For the benchmark parameter values the largest moment that exists is about 1.5. 
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Proposition 5.1. Let ˜ F (t, s ) ≡ H(t) G (s ) be the solution of the homogeneous part of the PDE in (5.23) , which describes the dy-

namics of the cross-sectional distribution of wealth. Then to a first-order approximation in β , ˜ F (t, s ) is given by 

˜ F (t, s ) = 

˜ F (0 , s ) e [�(s )+ ε�(s −β)] t (5.24) 

where ˜ F (0 , s ) = F 0 ∞ 

(s ) − F 1 ∞ 

(s ) . 

Proof. See online Appendix G. �

The convergence rate is determined by the function �(s ) + ε�(s − β) . Naturally, when ε = 0 , the convergence rate is

the same as in the nonrobust case. Note that the convergence rate depends on s , implying that different moments converge

at different rates. Fig. 7 plots this function. It extends from s = 0 to s = −1 . 3 . Since the robust Pareto exponent is 1.28, the

largest moment that exists for both distributions is 1.28. 

The top line plots �( s ), the nonrobust convergence rate. As in GLLM, convergence is slower in the tails. At the mean

(s = −1) , the convergence rate is 1.14%. Slower tail convergence reflects the fact that parametric disturbances move along

the distribution like a ‘traveling wave’, first hitting young individuals with low wealth, then spreading to older, more wealthy

individuals. With exponentially distributed lifetimes, most individuals are young, and possess little wealth. 

The bottom line plots the robust convergence rate. Note that convergence is faster in the tails. Higher-order moments

convergence faster due to scale dependence. When γ > 1 and ( a 1 , b 1 ) < 0, the drift and diffusion coefficients of wealth

increase with the level of wealth. This produces faster convergence in the tails. Now convergence at the mean takes place

at a rate of 3.85%, more than three times faster than in the nonrobust case. 

As emphasized by GLLM, standard random growth models obeying Gibrat’s Law converge far too slowly to explain the

recent rise in inequality. At a 1.14% convergence rate it would take more than 100 years to approach reasonably close to a

new stationary distribution, so unless we are moving to an economy with far more inequality than already exists, random

growth by itself seems inadequate. We claim that increased uncertainty and the resulting scale dependent growth dynamics

provides a plausible explanation not only for the increase itself, but more importantly, for its rapid pace. A 3.85% conver-

gence rate implies that it would take only 60 years to move 90% of the way to a new stationary distribution. Without

uncertainty, this same transition would require more than 200 years. The strength of our argument increases the farther

out in the tails we go. 

Finally, one should remember that robustness induced amplification and acceleration occurs despite the fact that with

additive preferences a counterfactually declining saving rate acts as a stabilizing force. As noted earlier in Section 3 , and

discussed in more detail in Online Appendix C, we can avoid this by using recursive preferences. Online Appendix H

presents plots comparing stationary distributions and convergence rates when preferences are assumed to be recursive,

as in Duffie and Epstein (1992) . It shows that recursive preferences reinforce the paper’s main findings concerning steady

state inequality and convergence rates. 

5.1. Numerical solution 

Analytical solutions are attractive because they reveal the underlying mechanisms at work. Still, it is important to keep

in mind that all the previous results are just approximations. These approximations can be avoided by solving the model

numerically. In principle, even the agent’s optimization problem could be solved numerically, but here we focus on the
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to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

accuracy of our key result, related to convergence rates. Proposition 5.1 is based on approximating a shifted Laplace trans-

form with a differential equation, and it is not entirely clear how good this approximation is. So here we numerically solve

an O ( ε) approximation of the KFP equation in (4.14) using a standard discretization algorithm, based on central-difference

approximations of the derivatives. 23 Even this O ( ε) approximation is nonstandard, due to the dependence of the drift and

diffusion coefficients on x . 

The parameters are the same as those in Table 1 . The algorithm is initialized at the known stationary distribution when

ε = 0 . The boundary conditions are f (∞ ) = f (−∞ ) = 0 , approximated using large positive and negative values of x . Fig. 8

depicts the evolution of the top 1% wealth share for the 32 year period from 1981 to 2012, along with the actual ( Saez and

Zucman, 2016 ) data. The dotted line near the top is the share implied by the robust stationary distribution when ε = 0 . 045 .

For comparison, we also plot the paths generated by recursive preferences and a standard random growth model. 

The path of the benchmark time-additive model lies in the middle, showing an increase in in the top 1% share from

about 24% to 30%. Although significant, this clearly understates the observed increase. Part of the apparent discrepancy

simply reflects the fact that the new stationary distribution understates long-run inequality by about 5 percentage points.

As noted earlier, although we could increase steady state inequality by increasing ε, this would produce counterfactual

portfolio policies. However, the path discrepancy reflects more than a discrepancy in steady states. The convergence rate

appears to be too slow as well, both in terms of the data and the model’s prediction. Proposition 5.1 suggests the top 1%

share should be converging at a rate of at least 3.85%, since that is the predicted mean convergence rate, and our model

predicts the tails should converge faster than the mean. In contrast, Fig. 8 suggests the top 1% share is converging at about

a 1.9% (average) rate. Hence, we are off by at least a factor of 2. This suggests that γ − 1 = 0 . 31 might be too large for the

ODE to accurately approximate the shifted Laplace transform. 

Given the discrepancy in the benchmark model, it is useful to examine the convergence properties of the model with

recursive preferences. As discussed in the Appendix, our analytical approximations suggest that recursive preferences should

generate faster convergence, since an increasing savings rate now reinforces the portfolio channel. The top (green) line in

Fig. 8 depicts the numerical convergence path using recursive preferences. As predicted, it converges more rapidly, reaching

a top 1% share of about 33% by 2012. Hence, with recursive preferences we can account for about half of the observed 18

percentage point increase in the top 1% share. 

Although these numerical results might seem disappointing, remember that traditional random growth models do even

worse. Following GLLM, suppose we instead attribute increased inequality to increased risk, as opposed to increased un-

certainty. In doing this, we must be careful to shut down the portfolio channel, since in our model increased risk reduces

investment in the higher yielding asset. Ceteris paribus, this reduces inequality. So in an effort to stay as close as possible to

GLLM, we simply fix α = 1 , and assume the equity premium is 1%. Initial volatility is calibrated to match the 1981 top 1%

wealth share (of about 24%). This yields an initial standard deviation of 12.2%. We then assume σ increases so as to match

the uncertainty model’s steady state share of about 37%. This implies a standard deviation of 13.4%. We then numerically
23 Our matlab code is available upon request. 
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calculate the transition path to the new long run steady state. The bottom dotted line displays the results. As discovered by

GLLM, the risk model generates a very slow transition. The top 1% share increases by only a few percentage points over the

entire 32 year period. Again, it does worse because it lacks any sort of feedback induced scale effects. 

Finally, as noted in Section 2 , there are reasons to believe the Saez–Zucman data overstate the actual increase in top

wealth shares. If this is indeed the case, then our results might be much closer than they appear. For example, a 9 percentage

point increase in the top 1% share would more than fully account for the increase registered by SCF or estate tax data. 

6. Detection Error Probabilities 

This paper has claimed that increased Knightian uncertainty provides a plausible explanation for the timing, magnitude,

and rate of increase of US wealth inequality. Here the basis of this assertion is examined. The key mechanism in our model is

wealth dependent pessimism, which produces wealth dependent portfolio allocations. Pessimism is formalized using a max-

min objective function, in which agents optimize against an endogenous worst-case scenario. A criticism of this approach is

to ask why agents should expect the worst. Following Hansen and Sargent (2008) , this critique is answered by constraining

the set of alternative models the agent considers. In particular, we suppose agents only hedge against models that could

have plausibly generated the observed data. 

Plausibility is quantified using ‘detection error probabilities’. The idea is to think of agents as statisticians who attempt

to discriminate among models using likelihood ratio statistics. When likelihood ratio statistics are large, detection error

probabilities are small, and models are easy to distinguish. Detection error probabilities will be small when models are very

different, or when there is a lot of data. Classical statistical inference is based on adopting a null hypothesis, and fixing the

probability of falsely rejecting this hypothesis. Detection error probabilities treat the null and alternative symmetrically, and

average between Type I and Type II errors. In particular, 

DEP = 

1 

2 

Prob (H A | H 0 ) + 

1 

2 

Prob (H 0 | H A ) 

Hence, a DEP is analogous to a p-value. Our results would therefore be implausible if the DEP is too small. Small DEPs imply

agents are hedging against models that could easily be rejected based on observed data. 

Models in our economy are continuous-time stochastic processes. Likelihood ratio statistics are integrals of the condi-

tional relative entropies between models, and as discussed previously, these entropies are determined by the evil agent’s

policy function, h ( x ), where x is the logarithm of wealth. In particular, Anderson et al. (2003) provide the following bound 

avg DEP ≤ 1 

2 

E exp 

{
−1 

8 

∫ T 

0 

h 

2 (x ) dx 

}

where T is the sample length. This bound is difficult to evaluate since x is stochastic. As a result, we compute the following

(state-dependent) approximation, avg DEP (x ) ≤ 1 
2 exp 

{
− 1 

8 T h 
2 (x ) 

}
. By fixing x , this overstates the bound at values of x where

h ( x ) is small, while understating it at values of x where h ( x ) is large. Fig. 9 plots this approximation using the benchmark

parameter values and assuming T = 200 . 
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Notice the DEP bound is nonmonotonic. This reflects the nonmonotonicity of h ( x ), which itself reflects the endogenous

nature of pessimism in the model. The agents who are least pessimistic in equilibrium are the very poor, because they

choose to avoid the risky technology, and the very rich, because they have a low marginal utility of wealth. Agents in the

middle have the most to worry about. When interpreting this plot one should keep in mind that a fixed T might not be

appropriate given the model’s OLG structure. In particular, one could argue that T should be age-specific. This would be the

case if agents weight their own experience more heavily than the entire past history of data, as evidence suggests they do. 24

If this were the case, the DEP would be smaller than Fig. 9 portrays for large values of x , while being larger for small values

of x . 

The main point to notice, however, is that the DEPs are quite large, for all values of x . This is true despite the fact that

setting T = 200 overstates the data that is actually available to agents. (Remember, our time unit here is a year). Although

AHS suggest the bound is not always tight, the numbers in Fig. 9 are so large that we suspect more refined estimates

would still preserve the basic conclusion that the degree of pessimism here is plausible. In fact, another way to see this

is to simply suppose investment outcomes are i.i.d coin flips. With a 10% standard deviation and 200 years of data, a 95%

confidence interval for the mean would be ±2 × 0 . 10 √ 

200 
≈ 1 . 4% . The implied drift distortions reported in Fig. 4 are well within

this interval. 

7. Conclusion 

The recent increase in US wealth inequality raises three important questions: (1) What caused it?, (2) Why did it start

around 1980?, and (3) Why has it been so rapid? There are already many answers to the first two questions. Although

we think our proposed explanation - increased uncertainty–provides an interesting and novel answer to these two ques-

tions, we view it more as a complement than a substitute to existing explanations. However, as recently emphasized by

Gabaix et al. (2016) , answering the third question is more challenging. Standard random growth models cannot explain why

top wealth shares more than doubled in little more than a single generation. To account for the rate of increase in inequality,

they argue it is necessary to extend random growth models by incorporating either ‘type dependence’ or ‘scale dependence’,

which produce heterogeneity in growth rates. Using the tools of robust control theory, we show that increased uncertainty

produces a natural form of scale dependence, which generates significantly more rapid convergence rates. 

More work needs to be done to make increased uncertainty a fully convincing explanation of recent US wealth inequal-

ity. First, the notion that the world became more uncertain around 1980 seems plausible, but should be more carefully

documented. There is abundant evidence that idiosyncratic labor income risk increased around this time ( Ljungqvist and

Sargent, 1998 ), but risk is not the same as uncertainty, and wealth is not the same as labor income. Robust control provides

a link between objective risk and subjective uncertainty by viewing distortions as ‘hiding behind’ objective risk. Hence, it

would be interesting to consider an extension to stochastic volatility, which would open the door to stochastic uncertainty

as well. In fact, there is no reason to view risk and uncertainty as competing explanations. Using panel data on the Forbes

400, Gomez (2017) finds that inequality during 1980–1995 was primarily driven by increased risk, while return heterogene-

ity (possibly driven by increased uncertainty) was primarily responsible for increased top wealth shares during the period

1995–2015. Combining both increased risk and increased uncertainty might help to close the gap in Fig. 8 . Second, the key

source of scale dependence in our model is that wealthy individuals earn higher mean returns. Again, there is abundant

evidence in support of this (although the evidence is less clear using after-tax returns). However, it is not clear whether

this return differential reflects portfolio allocation decisions, as in our model, or whether wealthy individuals receive higher

returns within asset categories as well. Using tax records from Norway, Fagereng et al. (2016a ) argue that wealthy investors

receive higher returns within asset categories. Hence, it would be interesting to consider a model where both forces are

at work. Finally, we have argued that wealth dependent pessimism is empirically plausible because the drift distortions it

produces could not be statistically rejected based on historical data. However, we suspect our detection error probability

bound is not very tight, and one could easily obtain tighter bounds using simulations. 

Supplementary material 

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.jmoneco.2017.11.008 .
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