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Abstract

This paper studies wealth inequality in a Blanchard/Yaari model with idiosyncratic investment returns. Its 
key innovation is to assume that individuals can buy information. Information reduces uncertainty about the 
unknown mean investment return. Reduced estimation risk encourages investment in higher yielding risky 
assets. As a result, endogenous information acquisition amplifies wealth inequality. Wealthy individuals 
buy more information, which leads them to invest a higher share of their wealth in higher yielding assets, 
which then makes them even wealthier. The model’s empirical implications are studied using Monte Carlo 
simulations and perturbation approximations. An empirically plausible decrease in information costs can 
explain about two-thirds of the observed increase in the top 1% wealth share.
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1. Introduction

We live in a so-called ‘information age’. We also live in an age of growing inequality. This 
paper shows these phenomena might be connected. It attempts to formalize and quantify an argu-
ment by Arrow (1987). Arrow noted that in financial markets the value of information is greater, 
the greater is the amount invested. At the same time, the cost is likely to be nearly indepen-
dent of the amount invested. Consequently, wealthy individuals devote a higher fraction of their 
wealth to information. Arrow used a simple 2-period/1-agent example to argue that endogenous 
information acquisition amplifies inequality.

Although suggestive, Arrow (1987)’s example cannot address the quantitative significance 
of information acquisition in the dynamics of wealth inequality. This paper quantifies Arrow’s 
example by incorporating learning and information acquisition into recent models of idiosyn-
cratic investment risk. In contrast to models of idiosyncratic labor income risk (Aiyagari, 1994), 
investment risk models generate the sort of power laws that characterize observed wealth distri-
butions.1

To focus on the role of information, this paper abstracts from all other sources of heterogeneity 
that create inequality. Agents have identical life expectancy, are born with identical initial wealth, 
and have access to private investment projects with identical mean returns. This mean return is 
unknown, however, and agents must learn about it by witnessing the history of their own invest-
ment returns. In addition, agents can pay a cost to acquire an additional signal. More precise 
signals are more expensive. In this environment, inequality is initially created by luck. Relatively 
wealthy agents experience relatively high investment returns. With learning, luck plays two im-
portant roles. First, it makes agents relatively ‘optimistic’, in the sense that high returns produce 
relatively high estimates of the mean return, which encourages risk-taking and wealth accumu-
lation. Second, higher wealth allows agents to buy more information, which makes them more 
‘confident’, where confidence is defined by the precision of their estimate.

Although it is well known that random growth over a random length of time is enough to 
generate fat-tailed Pareto wealth distributions (Reed, 2001), recent work by Gabaix et al. (2016)
(henceforth GLLM) shows that these random growth models cannot explain observed inequality 
quantitatively. In particular, they show their transition dynamics are far too slow. GLLM argues 
that it is important to allow for either ‘type dependence’ or ‘scale dependence’, which generate 
deviations from Gibrat’s Law. This paper shows that endogenous information acquisition pro-
duces a form of scale dependence.2 The mean growth rate and volatility of an agent’s wealth 
increase with wealth. This occurs for two reasons. First, relatively wealthy agents have higher 
savings rates. This is a widely documented feature of the data (Dynan et al., 2004). Second, rel-
atively wealthy agents allocate a higher fraction of their portfolios to risky assets. Again, this 
is a widely documented feature of the data (Carroll, 2002). The key mechanism driving both 
these decisions is that wealthy agents buy proportionally more information. They do this because 
information is proportionally more valuable to them.

1 Benhabib et al. (2017) note that idiosyncratic labor income risk models cannot generate wealth distributions with 
fatter right tails than the distribution of labor income. Investment risk models are examples of so-called ‘random growth’ 
models, which go back to the work of Champernowne (1953) and Simon (1955). Recent examples include Angeletos 
(2007), Benhabib et al. (2011), Benhabib et al. (2016), Cao and Luo (2017) and Toda (2014).

2 Recent work by Cao and Luo (2017) shows that “type dependence” in entrepreneurial productivity, combined with a 
shift in tax policy and financial deregulation, produces persistent return and wealth differences.
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One downside of studying a scale-dependent growth model is that we can no longer solve 
the model analytically. The model consists of a set of partial differential equations, which can-
not be solved in closed-form.3 In response, I employ a combination of Monte Carlo simulation 
techniques and classical perturbation approximations.

One might suspect that lowering the cost of information would exert an equalizing force on 
the distribution of wealth. Models based on asymmetric information and insider trading no doubt 
have this implication. However, here investment projects are agent-specific. One agent’s infor-
mation is of no value to anyone else.4 As far as information choice is concerned, each agent is 
a Robinson Crusoe. From the perspective of an individual agent, information is simply a source 
of increasing returns, since it encourages risk-taking, which encourages growth. However, when 
these agent specific scale effects are combined with heterogeneous, non-diversifiable shocks, a 
powerful force for inequality is ignited. Agents who get lucky early in life use their good fortune 
to acquire information about future investment returns. In this way, wealth begets wealth.

To study the quantitative implications of the model, I assume the US economy started from 
a stationary distribution in 1981, with information being relatively costly. I calibrate the initial 
value of the information cost parameter to match the initial top 1% wealth share. Since infor-
mation costs are not easily measured, to evaluate the ability of the model to explain changes in 
observed inequality, I compare two alternative strategies. To start, I simply pick the information 
cost parameters to replicate the top 1% wealth shares in both 1981 and 2014, and then evaluate 
their plausibility by calculating the implied shares of wealth and income spent on information. 
This strategy suggests that information costs declined by a factor of 24 for the median house-
hold. Although the initial shares of wealth and income spent on information seem plausible, the 
implied 2014 shares seem far too high. However, this should not be too surprising, since this 
strategy assumes that information costs can explain the entire increase in wealth inequality. In 
response, I then use fees from the hedge fund industry to directly measure the decline in in-
formation costs. These data suggest that, by 2014 costs had declined by a factor of 11 for the 
median household. Introducing this information cost reduction into the model, and assuming the 
economy had reached its steady state by 2014, I find that the top 1% wealth share increases from 
24.4% to 32.7%. Since the actual share was 37.2%, hedge fund data suggest that the model can 
account for about two-thirds of the observed increase.

The analysis here is related to work by Peress (2004) and Kacperczyk et al. (2018). They too 
are motivated by Arrow (1987). However, there is an important difference between their work 
and mine. Endogenous information acquisition in these papers is about allocating attention to 
multiple assets for a given information capacity. Initially wealthy agents are assumed to have 
higher information capacity. These models focus on portfolio choice, and emphasize the gen-
eral equilibrium effects on endogenous asset prices, with certain assets becoming less traded 
by unsophisticated investors due to strategic substitution. In my model, information capacity 
is endogenous, whereas asset returns are exogenous. By shutting down the general equilibrium 
channel and assuming a private investment technology, I am able to derive explicit expressions 
for the dynamic relationship between wealth and information. Note that in my model, agents do 
not initially differ in either wealth or information capacity. Lucky agents who are hit with a series 

3 For recent technical advances in macro models using this approach, see Achdou et al. (2017).
4 Caveat: Since all projects are assumed to have the same (unknown) mean return, in principle agents could speed up 

their learning by observing the returns on other agents’ projects. I assume these other returns are either unobserved, or 
that agents are unaware that all projects have the same mean return.
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of positive shocks become more sophisticated because information is more valuable for wealthy 
agents, which makes them even wealthier.

The remainder of the paper is organized as follows. Section 2 motivates the discussion by 
providing background information on wealth inequality, hedge fund growth, and household port-
folios. Section 3 outlines the model. Section 4 derives first-order perturbation approximations of 
an agent’s policy functions. Sections 5 studies aggregation and the cross-sectional distribution of 
wealth and beliefs. Section 6 presents numerical solutions to the stationary wealth distribution. 
Section 7 compares top wealth shares in several economies with alternative information struc-
tures. Section 8 reports a sensitivity analysis by showing how top wealth share changes when 
the benchmark parameter values change. Section 9 briefly discusses related literature, and Sec-
tion 10 offers a few concluding remarks on policy implications and possible extensions. Proofs 
and derivations are contained in an online technical appendix.

2. Motivation

This paper focuses on US wealth inequality. Saez and Zucman (2016) provide detailed data 
on top wealth shares. They use individual taxpayer data from the Internal Revenue Service, along 
with intermittent survey data from the Survey of Consumer Finances, and estate and foundations’ 
tax records. They use capitalization methods to translate income to wealth. For assets that do not 
generate taxable income (e.g.: pensions, primary residences), they use other information, such 
as property taxes and pension distributions, to generate imputed levels of wealth in those asset 
categories.

The advantages and disadvantages of this data, as opposed to just using SCF or estate tax 
data, are discussed in Kopczuk (2015). He points out that for top wealth shares, the capitalization 
method produces higher estimates of top wealth shares than other approaches. However, the 
SCF data suffers from a well known nonresponse bias. For example, the response rate from the 
top percentile is only about 25%. This produces considerable underestimation for top wealth 
concentration. The estate tax data measures wealth concentration at the individual level, so it is 
not clear whether estimates are lower or higher than at the household level. Since most investment 
decisions are determined at the household level, this paper focuses on wealth concentration at the 
household level. Thus, the capitalization method is likely the more suitable. One caveat is that 
the capitalization method assumes that returns within asset categories are identical, which could 
generate bias if there exists correlation between wealth and returns (Fagereng et al., 2016).

Fig. 1 plots the top 1% wealth share from this dataset. This paper does not attempt to explain 
the reduction of top wealth concentration before the 1980s.5 As one can see, a substantial increase 
in wealth inequality is observed beginning in the early 1980s. The top 1% wealth share was ‘only’ 
around 24.4% in 1981, but reached 37.2% by 2014.

There are many proposed explanations for this increase. Perhaps the most common one fo-
cuses on taxes (Aoki and Nirei, 2017). There were indeed shifts in tax policy in the early 1980s 
that favored the wealthy, and this paper does not dispute the potential role of taxes. However, 
one intriguing finding in Aoki and Nirei (2017) is that the impact of taxes on inequality seemed 
to increase as well around this time. This suggests that additional factors might be at play. This 
paper shows that the information technological change creates opportunities, by making infor-
mation acquisition and information processing less costly. We can gauge the importance of these 

5 Piketty (2014) provides detailed explanations for this as a long process starting from WWI.
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Fig. 1. Top 1% wealth share in the USA.

Fig. 2. Fraction of risky assets holding.

Fig. 3. Percentage of households delegating wealth.

changes indirectly by looking at changes in household portfolios and in the wealth management 
industry. Fig. 2 plots SCF data on the share of private risky assets in household portfolios in 2013. 
Households are grouped by relative log wealth, in increments of 5 percentage points. As one can 
see, relatively wealthy investors hold a higher share of risky assets in their portfolios. Simple 
dynamic consumption/portfolio models in the Merton tradition predict that portfolio shares are 
independent of wealth.

There are many potential reasons why risky portfolio shares might increase with wealth. This 
paper attributes it to the fact that wealthy investors have better information. They have better 
information because they can afford to buy it. Fig. 3 reports one piece of evidence to support 
this idea. It plots the percentage of households who pay either a hedge fund or a mutual fund for 
wealth management services as a function of log wealth. The data are from 2013.
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Fig. 4. Number of hedge funds.

Fig. 5. Average incentive fees in hedge funds.

Evidently, if your wealth is less than $22,000 (≈ e10), you are very unlikely to be delegat-
ing your wealth. Interestingly, the plot suggests that this represents something of a threshold. 
The likelihood of paying for wealth management rises rapidly after this point. This suggests the 
presence of a fixed cost. For simplicity, my model abstracts from fixed costs.6

Finally, from the perspective of my model, looking at simple stock holdings data is a bit mis-
leading. Anyone can buy shares in Apple or Microsoft. My model presumes that risky investment 
is idiosyncratic. Hence, it is perhaps more consistent with recent work on private equity markets 
and entrepreneurship. (See Quadrini (2009) for a survey). However, even shares in public compa-
nies can become somewhat private if they are used in dynamic trading strategies based on private 
information and research. That’s what the hedge fund industry is all about. Figs. 4 and 5 present 
data on the explosive growth of the hedge fund industry, using data from Lipper TASS hedge 
fund database. Detailed summary statistics of this dataset is provided in Appendix F.

Fig. 4 shows that the hedge fund industry grew slowly during the 1980s, and then took off 
during the 1990s. This explosive growth coincided with a rapid fall in their fees during the 1980s, 
as seen in Fig. 5.7

Although the evidence in these figures is suggestive, the real question is whether plausible 
changes in the market for information can quantitatively account for the dramatic and rapid rise 
in inequality depicted in Fig. 1. To address this question we need a model.

6 Fixed information costs are likely to be more important in the left-tail of the wealth distribution. Here I focus on the 
right-tail.

7 The average hedge fund entry cost has gone down. However, this does not imply that it is cheap. Hedge funds have 
always been a club for the wealthy, even now. For example, for a typical hedge fund in 2013, one still needs at least $1.26 
mill. to enter, which implies one must be within the top 12.5% to take advantage of the hedge fund industry.
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3. The model

The model here combines two existing literatures. The first extends the workhorse Blan-
chard/Yaari continuous-time OLG model by incorporating idiosyncratic investment returns. Ben-
habib et al. (2016) show that this extension produces a double Pareto wealth distribution, with 
tail exponents that are easily interpretable functions of the model’s underlying parameters. How-
ever, their model is a traditional random growth model without scale dependence, i.e., it obeys 
Gibrat’s Law. Rather than study scale dependence, they focus on the role of bequests and fiscal 
policy in amplifying inequality. The second consists of a single paper, an unpublished Ph.D thesis 
by Turmuhambetova (2005). She incorporates endogenous information acquisition into a tradi-
tional Merton portfolio problem. However, her model consists of a single agent, so obviously 
there isn’t much discussion of inequality.

3.1. The setup

The economy consists of a measure 1 continuum of agents with exponentially distributed 
lifetimes. Death occurs at Poisson rate δ. When an agent dies, he is instantly replaced by a new 
agent with initial wealth w0. One can interpret this initial wealth as the present value of an agent’s 
(riskless) lifetime labour income. Agents have no bequest motive. They can invest in three assets: 
a risk free technology, a competitively supplied annuity, and a risky technology. The value of the 
risk free asset follows the deterministic process

dQ(t) = r̃Q(t)dt (3.1)

with constant rate of return r̃ . Since agents face idiosyncratic death risk, there is a gain from 
setting up an annuities market, which allows agents to die in debt. By no arbitrage and free entry, 
the rate of return on these annuities is r = r̃ + δ. Therefore, in equilibrium, no rational agent has 
an incentive to use the risk free technology. The value of the private risky technology obeys a 
geometric Brownian motion

dS(t) = μS(t)dt + (1 − λ)σS(t)dB(t) (3.2)

That is, the private risky technology has a constant mean growth rate μ and a return volatility 
of σ . To be more realistic, I also assume that λ fraction of investment risk can be diversified 
away in the economy, so that the actual return volatility becomes (1 − λ)σ = σ̃ . To focus on 
scale dependence rather than type dependence (GLLM), I assume the mean and volatility are 
identical across agents. What is important is that the shocks, dB , are uncorrelated across agents.

A novel feature of my model is the assumption that agents do not know the mean return, μ, 
of their investment project.8 They must learn about it over time. As noted in the Introduction, 
I assume they do this by observing their own returns. Agents are unaware their ancestors used 
a technology with the same mean, so history does not matter to them. Likewise, they are un-
aware that other currently alive agents have the same mean return, so there is no perceived gain 
from observing other agents. Interestingly, even when agents observe a common stochastic pro-

8 As noted by Merton (1980), uncertainty about σ decreases as sampling frequency increases. It disappears in the 
continuous time limit.
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cess, evidence suggests they weight their own experience more heavily (Malmendier and Nagel, 
2016).9

Uncertainty is represented by a filtered probability space (�, P , {Ft}t≥0, F ), induced by an 
(unobserved) one-dimensional standard Brownian motion B(t), which satisfies the usual con-
ditions. Each agent has an equivalent probability measure P̂ that generates his own observable 
filtration ˆ{Ft } ⊂ {Ft }. This filtration defines the following conditional mean, μ̂(t), and variance, 
γ (t), of an agent’s estimate of μ

μ̂(t) = E[μ | F̂t ] (3.3)

γ (t) = E[(μ̂(t) − μ)2 | F̂t ] (3.4)

At birth, the investor has a prior mean μ̂(0) and a prior estimation variance γ (0).
By Girsanov’s theorem, B̂(t) is a Brownian motion under the investor’s own filtration.10

Following standard filtering theory [Liptser and Shiryaev (2000)], the innovation process B̂(t)

induced by the investor’s own filtration is related to the unobserved B(t) by

ˆdB(t) = 1

σ̃
[dS(t)

S(t)
− μ̂(t)dt] = dB(t) + μ − μ̂(t)

σ̃
dt (3.5)

3.2. Filtering and information

In addition to observed returns, at each instant of time t the investor observes a noisy signal y
that correlates with μ,

dy(t) = μdt + σy(t)dBy(t) (3.6)

where {By(t)} are standard Brownian motions, independent of {B(t)}. This generates a stream 
of additional information about the unobserved μ, which can be used by the investor to update 
his beliefs in Bayesian fashion.

The investor’s Kalman filtering equations can be written in innovations form

dμ̂(t) = γ (t)

σ̃
ˆdBs(t) + γ (t)

σy(t)
ˆdBy(t) (3.7)

dγ (t) = −γ (t)2
(

1

σ̃ 2 + 1

σy(t)2

)
dt (3.8)

where dB̂y is related to dBy(t) according to

ˆdBy(t) = 1

σy(t)
[dy(t) − μ̂(t)dt] = dBy(t) + μ − μ̂(t)

σy(t)
dt (3.9)

Now, the key innovation of my model is to allow agents to reduce the variance of the noisy 
signal, σ 2

y (t), by paying an information cost. Note, this is a monetary cost, expressed in units of 
wealth, not an information processing cost, expressed in bits per unit of time. However, I assume 

9 Ehling et al. (2016) and Nakov and Nuño (2015) incorporate experiential learning into an OLG framework. They 
focus on asset pricing.
10 Girsanov’s theorem delivers a stochastic process analog of a Jacobian. It describes how the dynamics of a stochastic 
process change when the original measure is changed to an equivalent (mutually absolutely continuous) probability 
measure. For details, see Liptser and Shiryaev (2000) or Øksendal (2003).
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this monetary cost is a function of the informativeness of the signal, as measured in conventional 
information-theoretic terms. In particular, I suppose the investor chooses an instantaneous chan-
nel capacity, κ(t).11 It provides a measurement of uncertainty reduction in a random variable. 
Formally, it is defined by the Kullback-Leibler divergence

κ =
∫

log
dP

dQ
dP (3.10)

where dP and dQ represent the posterior and prior conditional distributions of μ. In this partic-
ular case with a Gaussian information structure, σy(t) and κ(t) are related by

1

2

(
logγ (t) − logσ 2

y (t))
)

≤ I (t) (3.11)

where I (t) ≡ 1
2 log (2κ(t)). This relates signal precision to the rate of information. Given the 

current estimation variance, a higher channel capacity allows a more precise signal (i.e., a lower 
signal variance). This accelerates learning.

The investor chooses instantaneous capacity, κ(t), by paying a monetary cost. I assume the 
cost function, q(κ), is quadratic:

q (κ(t)) = 1

2θ
(κ(t))2 (3.12)

where θ is a cost parameter. When θ is small, information is costly. This function captures the 
increasing marginal complexity of processing financial information accurately. The increasing 
marginal cost structure also ensures the investor can never perfectly learn μ. One interpreta-
tion of this cost function is that there is a competitive industry producing and selling financial 
information at its marginal cost.12

3.3. Optimization problem

Each agent is assumed to have time-additive constant relative risk aversion (CRRA) pref-
erences. She needs to make continuous decisions on consumption, c(t), the fraction of wealth 
invested in the risky technology, π(t), and how much information to acquire, κ(t). Formally, she 
faces the following dynamic optimization problem:

V (w, μ̂, γ ) = max
c,κ,π

E

⎡
⎣ ∞∫

t

exp(−(ρ+δ)s) c(s)α

α
ds|F̂t

⎤
⎦ (3.13)

s.t.:

dw(t) = [w(t)(r + π(t)(μ̂(t) − r)) − c(t) − q(κ(t))]dt + π(t)σ̃w(t) ˆdB(t) (3.14)

dμ̂(t) = γ (t)

σ̃
ˆdB(t) + γ (t)

σy(t)
ˆdBy(t) (3.15)

11 In rational inattention models (e.g.: Sims (2003)), it is conventional to use base 2 logs, so that the entropy of a discrete 
distribution with equal weight on two points, −0.5 log (0.5)− 0.5 log (0.5) = 1, and this unit of information is called one 
“bit”.
12 A general convex information cost structure is considered in Turmuhambetova (2005). As here, Andrei and Hasler 
(2014) use a quadratic cost function.
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dγ (t) = −γ (t)2
(

1

σ̃ 2 + 1

σy(t)2

)
dt (3.16)

1

2
(logγ (t) − logσ 2

y (t))) ≤ I (t) (3.17)

where I (t) ≡ 1
2 log (2κ(t)). Here, 1 − α is the coefficient of relative risk aversion, and ρ denotes 

the rate of time preference. The capacity constraint on information is binding for an optimizing 
investor. Therefore, the choice of σ 2

y (t) is equivalent to the choice of κ(t). Thus we can substi-

tute κ(t) for σ 2
y (t) in what follows. Using Ito’s lemma, the HJB equation for this optimization 

problem can be written as

βV (w, μ̂, γ ) = max
c,κ,π

cα

α
+ Vw

(
rw + π

(
μ̂ − r
)
w − c − q(κ)

)+ 1

2
Vwwπ2σ̃ 2w2

+ (
1

2
Vμ̂μ̂ − Vγ )(

γ 2

σ̃ 2 + 2κγ ) + Vwμ̂πwγ (3.18)

where β = ρ + δ. The first-order conditions deliver the following policy functions, expressed in 
terms of the unknown value function V (w, μ̂, γ )13:

c∗ = V
1

α−1
w (3.19)

π∗ = −Vw(μ̂ − r) − Vwμ̂γ

Vwwwσ̃ 2 (3.20)

κ∗ = θγ

(
Vμ̂μ̂ − 2Vγ

Vw

)
(3.21)

Notice the optimal consumption function is the same as in the full information case, although 
consumption is indirectly influenced through changes in the value function. The risky portfolio 
share, π∗, has two terms. The first term reflects myopic asset demand as in a standard Merton 
portfolio problem, where the investor trades off between excess expected returns and its volatility. 
The second term reflects a hedging demand, which comes from learning about the parameter μ. 
Its sign depends on the level of risk aversion, α, and its intuition will become clearer after we 
derive the perturbation approximations in the next section. The κ∗ policy function shows that 
less information will be purchased when its cost is high (θ is low), and when uncertainty about 
returns is low (γ is small). Notice that the effect of uncertainty is greater when agents are more 
averse to it (i.e., when Vγ is more negative). More interestingly, it shows that, ceteris paribus, 
wealthy agents will buy more information, since their marginal utility of wealth, Vw, is relatively 
low. The role of the numerator will become clear in the next section.

4. Policy function approximations

Due to the interdependence of the value function V (w, μ̂, γ ) and the policy function equa-
tions (3.19)–(3.20), we need to solve a 3-dimensional, highly nonlinear PDE. A closed-form 
solution is wishful thinking. However, it turns out that when information is prohibitively expen-
sive (θ = 0), and the investor has log preferences (α = 0), the PDE for the value function can be 

13 Given the recursive structure, I now drop the time t notation for convenience.



X. Lei / Journal of Economic Theory 184 (2019) 104937 11
solved analytically.14 This opens the door to a classical perturbation approximation. The deriva-
tion of value function is derived in the Appendices A and B. Here, I focus on the implied policy 
functions:

Proposition 1. To an O (θ, α) approximation, the policy functions for savings rate, risky portfolio 
share, and information choice are given by

s̃∗ ≈ (1 − β)︸ ︷︷ ︸
benchmark saving rate

+ α

2σ̃ 2

[
(μ̂ − r)2 + γ 2

βσ̃ 2

]
︸ ︷︷ ︸

exogenous learning

+ θβw exp

(
2βσ̃ 2

γ
log(μ̂ − r) − (μ̂ − r)2

2γ

)
︸ ︷︷ ︸

endogenous learning

(4.22)

π∗ ≈ 1

σ̃ 2 [(1 + α)(μ̂ − r)︸ ︷︷ ︸
myopic portfolio

+ α
(μ̂ − r)γ

βσ̃ 2︸ ︷︷ ︸
exogenous learning

+ θw exp

(
2βσ̃ 2

γ
log (μ̂ − r) − (μ̂ − r)2

2γ

)
[(μ̂ − r) + 2βσ̃ 2 − (μ̂ − r)2

(μ̂ − r)
]︸ ︷︷ ︸

endogenous learning

] (4.23)

κ∗ ≈ θw

β

[
1 − βσ̃ 2

γ
eβσ̃ 2/γ (0, βσ̃ 2/γ )

]
≈ θwγ

β2σ̃ 2 (4.24)

where (a, x) = ∫∞
x

ta−1e−t dt is the incomplete Gamma function.

Proof. See Appendix A and B. �
4.1. Comments on information choice

Like any other good, the optimal amount of information is chosen so that its marginal cost 
equals its marginal benefit. Recall that the information cost function is q(κ(t)) = 1

2θ
(κ(t))2, 

which implies that the marginal cost of information at the optimum is equal to κ
∗

θ
. Therefore, an-

other way to interpret equation (4.24) is that, to a first order approximation, the agent is willing 
to spend her wealth on acquiring information up to a point where her marginal cost of acquiring 
it at the moment, κ∗

θ
, equals the perceived expected discounted lifetime marginal benefit from 

acquiring it, (i.e.: wγ

β2σ̃ 2 ). It is not surprising that the marginal benefit rises when either wealth 
or uncertainty increase. On one hand, increased wealth enhances the marginal benefit of ac-
quiring more information for given uncertainty level. On the other hand, most rich people will 
already have a relatively low estimation uncertainty, which implies that acquiring more informa-
tion probably has less marginal benefit. To see the net effect of these two opposing forces, one 
can calculate the drift of the optimal choice of information capacity. We know that

14 In this case, learning is based on exogenous information, and the learning problem decouples from the saving and 
portfolio problems. This is due to the fact that a log investor does not need to hedge against perceived changes in the 
investment opportunity set. Income and substitution effects offset each other (Gennotte, 1986).
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Et(dκ) = θ

β2σ̃ 2 Et(d(wγ ))

= θ

β2σ̃ 2 Et(γ dw + wdγ + 1

2
dwdγ )

= θ

β2σ̃ 2 (γμ(w)w + w(−γ 2(
1

σ̃ 2 + 2θw

β2σ̃ 2 )))dt

≈ θ

β2σ̃ 2 γμ(w)wdt (4.25)

where the second equality applies Ito’s lemma, and the last approximation takes a first order 
approximation of γ around γ = 0. Since the mean wealth growth rate, μ(w) > 0, we know that 
up to an O(γ 2) approximation, the wealth effect dominates. Note that this analysis takes into 
account the fact that rich people learn faster, but this effect is of order O(γ 2), while the wealth 
effect is of order O(γ ). This holds as long as γ is small. Of course, one might question whether 
this approximation is accurate. I shall return to this question in the numerical section.

4.2. Portfolio choice

From equation (4.23), one can see that to a first-order approximation, one can decompose 
optimal portfolio choice into three pieces. The first part is the myopic demand of a Merton agent. 
The second piece is a portfolio hedging demand coming from learning (Gennotte, 1986). Notice 
this is independent of wealth, so learning by itself is not a source of scale effects. It is worthwhile 
to examine the sign of this hedging demand. With a small initial estimation error, (μ̂−r) is almost 
always positive. Therefore, the sign of the hedging demand is determined by one’s risk aversion 
coefficient α. Since agents invest in their own private technology and receive private signals, this 
source of idiosyncratic shocks in learning already creates heterogeneity in portfolios. However, it 
is not a source of scale dependence. The last component of portfolio demand is what creates scale 
dependence. The presence of information choices increases portfolio demand directly, whose 
effect is stronger the wealthier an agent is.

4.3. Savings rate

Just like portfolio choice, from equation (4.22), one can also decompose the savings rate into 
three pieces. The first piece (1 − β) is the saving rate of a benchmark log utility agent without 
learning. The agent adheres to the Permanent Income Hypothesis in this case, and consumes a 
fixed percentage of wealth equal to their effective discount rate (ρ + δ). The interpretation of 
the second piece is the additional saving rate of a CRRA agent, whose sign may or may not be 
positive, depending on the level of risk aversion. The last component reflects information choice. 
Observe that it is wealth dependent. Ceteris paribus, wealthy agents have higher saving rates. 
This is consistent with the data.15 In this model, it is due to the fact that wealthy investors prefer 
to save their wealth for acquiring information and invest in risky assets. However, I shall return 
to this point and show in the numerical section that the scale dependence in the savings channel 
has a quantitatively smaller effect than the portfolio choice channel.

15 See, for example, Dynan et al. (2004).
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Corollary 4.1. Ceteris paribus, as information cost decreases, the demand for information in-
creases. This effect is stronger when agents get richer. Finally, increased information leads to an 
increased risky portfolio share. That is, ∂κ∗

∂θ
> 0, ∂κ∗

∂θ∂w
> 0, ∂π∗

∂κ
> 0.

Proof. This comes directly from taking partial derivatives of the optimal information policy 
function with respect to information cost, i.e.: ∂κ∗

∂θ
= wγ

β2σ̃ 2 > 0; ∂κ∗
∂θ∂w

= γ

β2σ̃ 2 > 0. Finally, since 
∂π∗
∂w

> 0 and ∂κ∗
∂w

> 0, we then have ∂π∗
∂κ

> 0. �
Not surprisingly, when information becomes less expensive (θ ↑), agents demand more infor-

mation. However, notice the effect interacts with wealth. This implies that even though everyone 
buys more information when information is cheaper, the marginal effect is greater for wealthy 
agents. As will be discussed in the next section, this give them a greater incentive to accumulate 
wealth through a portfolio channel. It is important to keep in mind that these results are just par-
tial derivatives, holding other endogenous variables constant. Full responses are depicted in the 
Numerical Results section.

5. The distribution of wealth

Thus far we have studied the problem and decision rules of a single agent. Since our main 
goal is to study inequality, we must now aggregate these decision rules and characterize the 
cross-sectional distribution of wealth. Readers not interested in analytic results can jump directly 
to the Numerical Results section, where the quantitative results are presented.

5.1. Individual wealth and belief dynamics

I begin by describing the wealth and belief dynamics of an individual agent. Wealth dynamics 
are obtained by substituting the policy functions into the wealth accumulation equation in (3.14).

Lemma 5.1. To a first-order approximation, an individual’s wealth dynamics under filtration 
{Ft } are governed by the diffusion

dw = (a + θwb)wdt + (c + θwd̂)wdB (5.26)

where

a = (μ − r)

σ̃ 2

[
(1 + α)(μ̂ − r) + α

(μ̂ − r)γ

βσ̃ 2

]
+ α

σ̃ 2

[
(μ̂ − r)2 + γ 2

βσ̃ 2

]
(5.27)

b = exp (f 0(μ̂, γ ))(r + (μ̂ − r)

σ̃ 2 ((μ̂ − r) + f 0
μ̂
γ )) (5.28)

c = 1

σ̃

[
(1 + α)(μ̂ − r) + α

(μ̂ − r)γ

βσ̃ 2

]
(5.29)

d̂ = exp (f 0(μ̂, γ )

σ̃
(μ̂ − r + f 0

μ̂
γ ) (5.30)

where f 0(μ̂, γ ) = 2βσ 2

γ
log (μ̂ − r) − (μ̂−r)2

2γ

Proof. See Appendix C. �
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There are two effects when information cost goes down. They work in the same direction 
on wealth accumulation: First, for a given level of information demand, cheaper information 
relaxes the investor’s budget constraint, allowing more savings and investment. Second, cheaper 
information triggers a substitution effect toward more information, allowing investors to be more 
confident about asset returns, thus taking on more risk. From Lemma 5.1, one can see that if 
we fix the two endogenous variables, an increase in θ leads to an increase in the growth rate 
and volatility of wealth. Of course, since wealth and uncertainty themselves are endogenous, one 
can’t tell from the above comparative statics the total effect of an increase of θ on growth and 
volatility. To study the total derivative, I rely on numerical simulations.

For some questions it is convenient to characterize the wealth distribution analytically. For 
example, doing so clarifies the interaction between belief heterogeneity and wealth inequality. 
For more technical readers, here we shall see that learning and endogenous information produces 
a right-tail Pareto exponent that is smaller in absolute value than without learning, and we can 
interpret this exponent in terms of the model’s underlying parameters. Analytic characterization 
of the cross-sectional distribution of wealth and beliefs can be accomplished by studying the 
properties of the Kolmogorov-Fokker-Planck (KFP) equation. Although the KFP equation can 
be used to study the transition dynamics of inequality, here I focus on stationary distributions.16

We begin by collecting together the stochastic differential equations describing an individual’s 
wealth and beliefs.

Proposition 2. Let x = log (w), and let f (x, μ̂, γ ) denote the stationary cross-sectional dis-
tribution of (log) wealth and beliefs. It obeys the following KFP partial differential equation 
(subscripts denote partial derivatives)

0 = f

[
3γ

σ̃ 2 − δ + θex(cd̂ − b + 2γ

β2σ̃ 2 + 4γ

β2σ̃ 2 + 1

2
d̂μ̂

γ

σ̃
+ 1

2
d̂μ̂

γ

σ̃
)

]
(5.31)

+fx

[
1

2
c2 − a + θcd̂ + θex(cd̂ − b + d̂μ̂

γ

σ̃
)

]

+fμ̂

[
γ (μ̂ − μ)

σ̃ 2 + θex

(
2γ (μ̂ − μ)

β2σ̃ 2 + γ d̂

σ̃
+ d̂

2

γ

σ̃

)]
+ fγ γ 2

(
1

σ̃ 2 + 2θex

β2σ̃ 2

)

+
(

1

2
c2 + θexcd̂

)
fxx + 1

2
fμ̂μ̂

(
γ 2

σ̃ 2 + 2θexγ 2

β2σ̃ 2

)
+ 1

2
(c + θexd̂)

γ

σ̃
fxμ̂

+ δζ(X − X0)

where X = [x, μ̂, γ ]T represents the state vector, and X0 = [x0, μ0, γ0]T represents initial (log) 
wealth and beliefs at birth. The function ζ(.) is a Dirac delta function.

Proof. See Appendices C and D. �
The KFP equation characterizing the stationary distribution is a 3-dimensional PDE, describ-

ing the distribution of wealth and beliefs, as summarized by the conditional mean and variance of 
expected returns. One can study this system using classical time-scale separation methods. These 
methods convert the problem to one of studying the interaction between two lower dimensional 

16 Gabaix et al. (2016) focus on transition dynamics. Kasa and Lei (2018) use the time-dependent KFP equation to 
argue that ambiguity accelerates transition dynamics.
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Table 1
Benchmark parameter values.

μ ρ δ α γ0 σ λ θ1 θ2 w0

0.11 0.015 0.0246 −0.4 0.002 0.5 0.47 0.000016 0.00077 1

subsystems. In particular, when uncertainty about mean returns is ‘small’, learning is ‘slow’. As 
a result, wealth and beliefs evolve on different time-scales. Wealth evolves quickly, while be-
liefs evolve slowly. One can first solve a 1-dimensional KFP equation for wealth, holding beliefs 
fixed, then use the implied stationary distribution of wealth to average over wealth dependence 
in the equations describing the cross-sectional distribution of beliefs. Finally, Laplace’s method 
can be used to characterize the right-tail of the marginal distribution of wealth.

Proposition 3. Let φL and φ0 denote the tail Pareto exponent of stationary distribution of wealth 
in endogenous and exogenous information economy respectively. Let φμ̂ and φμ̂μ̂ be the first and 
second derivative of the tail exponent w.r.t. μ̂ evaluated at the μ̂ = μ. For large x, the (right) tail 
Pareto exponent with endogenous information, φL, is approximately

φL ≈ φ0 + (1 +
φ2

μ̂

2|φμ̂μ̂| ) ⇒ |φL| < |φ0|

Hence, endogenous information decreases the tail exponent, and endogenous information in-
creases top wealth shares.

Proof. See Appendix E. �
Using this time-scale separation approximation, one can then see that endogenous information 

acquisition reduces the absolute value of the right-tail Pareto exponent, thereby increasing top 
wealth shares.

6. Numerical solution

In this section, I first present the policy functions using calibrated parameters. I then compute 
the stationary distribution using Monte Carlo simulation, and study the quantitative implications 
of endogenous information acquisition in amplifying wealth inequality.

Table 1 summarizes the benchmark parameters I use, with the choice of each parameter dis-
cussed below.

1). Death rate δ. The mean working life is δ−1 = 40.7 years. It is chosen to match average 
duration in the US labor force. According to published data from Bureau of Labor Statistics, 
average labor force duration in the United States in 1996–2016 is 40.7 years,17 implying an 
annual death rate of 2.46%.

2). Volatility, σ , and diversification, λ. The model emphasizes idiosyncratic investment risk. 
Of course, investment risk is both idiosyncratic and aggregate. To capture this, I follow the ap-
proach in Angeletos and Panousi (2011) (later referred to as AGP). AGP consider a risky asset 
investment process s.t.:

17 See https://www.bls .gov /emp /tables /median -age -labor-force .htm.

https://www.bls.gov/emp/tables/median-age-labor-force.htm
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dS(t) = μS(t)dt + (1 − λ)σS(t)dB(t) (6.32)

where λ captures the fraction of investment risk that can be diversified in the public equity mar-
ket. One can think of a household owning a private business, where λ fraction of it goes public, 
while the rest (1 − λ) remains private. This interpretation suggests that one can simply look at 
the ratios of corporate and proprietors profits to total profits as an estimate of the fraction of 
diversifiable risk. As in AGP, the gross idiosyncratic volatility of risky investment implies that 
σ = 0.5, where they combine several estimates of private sector volatility in US from the lit-
erature. Using the ratio of proprietors’ profits over total profits as an estimate of diversifiable 
risk, they find using National Income and Product Account (NIPA) data that during 1981–2006, 
the fraction is 47%. This suggests that λ = 0.47. Therefore, the “pure” risk (1 − λ)σ would be 
around 0.26. This is used for my benchmark calibration. AGP then note that using the estimated 
idiosyncratic variance of consumption growth in the US, the number is much smaller, with “after 
diversification” risk (1 − λ)σ = 0.2 instead. Therefore, I will experiment with a range of values 
in the subsequent sensitivity analysis.

3). Time preference, ρ. Empirical estimates of (annual) time preference are around 1% to 2%. 
I take the average estimate here so that ρ = 1.5%.

4). Risk aversion, α. I set the benchmark value to α = −0.4, implying a coefficient of relative 
risk aversion of 1.4. Although this might appear to be implausibly low from an asset pricing 
perspective, we know from the work of Barillas, Hansen, and Sargent (2009), for example, that 
it can be misleading to interpret risk aversion coefficients in environments featuring different 
information structures. Moreover, there are constraints in choosing this parameter. For example, 
if α is too low, poor people in the economy would either start shorting assets, or start saving 
too much. But since this is an economy populated by Robinson Crusoes, one needs to keep the 
savings rate and portfolio shares between zero and one. Parameter search using these criteria 
shows that −0.4 is the lowest that α can go. However, we will still see the effect of changing α
in changing wealth distribution in the subsequent sensitivity analysis.

5). Mean growth rate, μ. Since now I take into account that a fraction of investment risk 
is diversified in the financial market, the mean growth rate μ has the interpretation of being a 
weighted average of private and public equity mean growth rates. The average annual real return 
in the US stock market is 6.5%, from Robert Shiller’s stock market index data from 1980 to 
2018. With private equity mean return being 15% (as the average of Moskowitz et al. (2002) and 
Kartashova (2014)), and using λ = 0.47 as the weight on public and private equity, I find that 
new mean estimate is 0.11.

6). Prior estimation variance, γ0. This parameter is estimated from the learning and portfolio 
choice literature a la Brennan (1998) and Xia (2001). The idea is that the prior variance should 
correspond roughly to the variance of the sample mean. Brennan uses Ibbotson and Sinquefield 
data (1926–1977) and finds that the prior variance is (0.0452)2, while Xia (01) uses CRSP data 
(1950–1997) and finds that the prior variance should be equal to (0.0433)2. This gives us γ0 to be 
roughly 0.002. However, one might argue that the variance of annual public equity returns might 
not correspond to its private equity counterpart, with the latter being potentially more volatile 
and harder to estimate. However, as we will see in the next section, changes in γ0 do not change 
the results much quantitatively.

7). Information cost parameter, θ . I explore two ways of calibrating information cost changes. 
The first calibrates θ to observed changes in inequality, and then asks whether the implied ex-
penditure share is ‘reasonable’ on a priori grounds. I assume that information cost in 1981 was 
originally high (θ1). Then information cost suddenly decreases to θ2 to produce higher inequal-
ity. I assume that the economy has since then transitioned to reach a new steady state in 2014, so 
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Fig. 6. Optimal information choice.

that we see the observed inequality in 2014. This strategy implies that θ1 = 0.000016 in 1981, 
while θ2 = 0.00077 in 2014. This then implies that for the median household, information costs 
declined by a factor of 24.3. It also implies that the share of wealth and income spent on infor-
mation by the median and mean household was about 0.12% and 1.73%, respectively, in 1981. 
These seem like plausible values. However, in response to the large decline in information costs, 
the model predicts that these shares increased to 2.92% and 39.7%. These information expendi-
tures are clearly too large. In fact, if we look at the mean rather than the median household, the 
shares are even bigger.18

I plot the information choice functions using these parameters in Fig. 6.
Fig. 6 (A) plots information choice as a function of wealth w and uncertainty γ in 2014. As 

discussed in Section 4, information demand increases with both uncertainty and wealth, with the 

18 In computing information expenditures, one needs to take into account the fact that average estimation uncertainty 
is also different with different information costs. To do this, I use γ̄ 2

2014(θ2), which is the median person’s estimation 
variance given the 2014 information cost parameter in computing the average demand and spending on information, 
similarly γ 2 (θ1) for 1981. The same method is used when computing at the mean.
1981
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Fig. 7. Risky portfolio share and savings rate.

wealth effect being the dominant force. Fig. 6 (B) plots the response of information to wealth in 
both years, fixing uncertainty at its initial level. As one can see, in both years, capacity choice 
increases with wealth, but the response is much stronger in 2014.

Fig. 7 (A) illustrates the risky portfolio share as a function of wealth. We can see that not only 
do wealthy investors invest more in risky assets, but they also invest a higher fraction of wealth in 
risky assets. Although they might appear to be less risk averse than poorer investors, this behavior 
is driven by endogenous information choice. Fig. 7 (B) illustrates the savings rate as a function of 
wealth. From the graph, one can see that although the saving rate increases with wealth, which 
contributes to inequality, the increase is quite mild. Although the endogenous information has 
interesting qualitative effects on saving, its important quantitative implications are on portfolio 
choice.

Next, I simulate the economy using the above benchmark parameters to study the quantitative 
implications of endogenous information acquisition on inequality. 3000 agents are endowed with 
initial wealth w = w0. Wealth and belief dynamics are simulated, with time step size discretized 
such that dt = 0.5. Agents experience birth and death with probability δdt at each time step. 
After simulating the economy for 500 years, a stationary distribution is achieved. I first use 
empirically plausible parameters from the benchmark calibration. Later, in section 8, I report 
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Table 2
Effect of �θ .

Mean growth rate change Volatility change Estimation variance decrease rate change

30.00% 6.54% 105%

how the results change in response to small perturbations of each parameter, holding fixed all 
other parameters at their benchmark values.

We should not be too surprised that the model implies implausibly large information expendi-
tures when calibrated to match the entire increase in inequality. After all, the model completely 
ignores taxes, bequests, and labor income! Thus, it is useful to calibrate the model a second way, 
using data on actual information expenditures. Since wealthy households are more likely to del-
egate their wealth to wealth management firms, I utilize the Lipper TASS hedge fund dataset to 
estimate information cost reductions.19 To do this, I interpret fees paid to fund managers as the 
cost of information. The data set spans from 1977 to 2005, and I compare changes in fee struc-
ture by splitting the sample into two periods, i.e.: 1977–1980 and 1981–2005. Most hedge funds 
charge two types of fees: management fees and incentive fees. Although the management fee is 
charged as a percentage of wealth annually, the incentive fee is not. Instead, the incentive fee is 
estimated as the percentage of profits taken by the fund manager. Thus, adjustment is needed to 
convert incentive fees measured as percentage of wealth. I adjust the estimates by multiplying 
the percentage of incentive fee with the average profit to fund size measured by net asset value 
ratio. Using the median as the average measure, I find that information costs declined by a factor 
of 10.88. At the mean, they declined by a factor of 15.00. Not surprisingly, this is smaller than 
the above value of 24.3, which was implied by the observed increase in inequality. The question 
therefore becomes – How much inequality does this measured cost reduction produce? To an-
swer this question, I first set θ1 at its 1981 level so that it matches the 1981 top 1% share. I then 
search θ2 such that the implied information cost is reduced by a factor of 10.88. This generates a 
value of θ2 = 0.000226 in 2014. Using this estimate of θ2, I re-run the Monte Carlo simulations. 
I find that the resulting top 1% wealth share becomes 32.67%, which implies an increase of 8.27
percentage points. Since top 1% share actually increased by 12.8 percentage points from 1981 to 
2014, this suggests that endogenous information acquisition can explain about 64.6% of the rise 
in top 1% wealth share.

To identify the contributing factors behind the rise in inequality, I compute the cross sec-
tional mean percentage changes of the drift and volatility of wealth, along with the rate at which 
estimation variance decreases in response to a change from θ1(0.000016) to θ2(0.00077).

As one can see, since the units here are percentage changes relative to their θ1 values, the 
interpretation is that the rate at which average wealth grows increases by 30%, while the same 
measure for volatility increases by 6.54% (Table 2). That is, a reduction in the cost of information 
increases both the average growth rate and volatility of wealth, with the effect stronger on the 
growth rate. Finally, one can also see that when one moves from the θ1 to θ2 economy, estimation 
variance decreases roughly twice as fast.

19 The Lipper TASS hedge fund dataset contains high quality panel data over several decades. It reports detailed infor-
mation on hedge fund fee structure, return performance and various characteristics of over 7,500 actively reporting hedge 
funds and funds of hedge funds, plus over 11,000 graveyard funds. A detailed summary of the data set can be found in 
Appendix F (Table 5).
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Table 3
Top 1% share.

θ Economy A Economy B

θ = 0.00077 28.37% 37.20%
θ = 0.000226 25.08% 32.67%

7. Inequality in two economies

The above section examined how much inequality would have increased from 1981 to 2014 
if the only change in the US economy had been a reduction in the cost of information, assuming 
we live in a world of endogenous information acquisition. Note that a reduction in the cost 
of information has two effects: (1) an average effect whereby everyone buys more information 
than before, and (2) a distributional effect, which creates scale dependence. To isolate these two 
different effects, it is useful to decompose the mechanism in more detail. To do this, I consider 
the following two hypothetical economies:

Economy A: Exogenous information economy.
Economy B: Endogenous information economy.

In Economy A, everyone is constrained to have the same channel capacity, although this com-
mon capacity is allowed to respond to changes in information costs. In Economy B, people can 
choose to buy more capacity, and this choice will in general depend on wealth. Naturally, in-
equality is higher in Economy B than in Economy A. This is the central point of the paper. Still, 
it is useful to know how much of this increase is due to the pure effect of more (common) in-
formation, which encourages everyone to take more risks, and how much additional inequality is 
created by the feedback between wealth and information acquisition. To accomplish this decom-
position we need to hold constant the average information capacity across the two economies. 
Recall that a typical agent’s estimation uncertainty evolves according to

dγ (t) = −
(

γ (t)2

σ̃ 2 + 2κ(t)∗γ (t)

)
dt (7.33)

where κ(t)∗ = θwγ

β2σ 2 indicates the level of that common capacity. Substitute in, this implies that

dγ (t) = −γ (t)2(
1

σ̃ 2 + 2θw(t)

β2σ̃ 2 )dt (7.34)

In Economy A, I feed in everyone’s estimation uncertainty in the above way when they happen 
to be the median person, i.e.: w(t) = w(median). I report the implied top 1% share in Table 3. I 
again report results for two different θ values. When θ = 0.00077, Economy B perfectly matches 
the top 1% share in 2014 by construction. We can see that Economy A produces a top 1% share of 
28.37%. Hence, the feedback between wealth and information accounts for about two-thirds of 
the total 12.4 percentage point increase in inequality. For comparison, I then use θ = 0.000226, 
which is the empirically implied value from the hedge fund data. In this case, feedback accounts 
for even a larger share of the total increase, roughly 90%.

8. Sensitivity analysis

In this section, I study how changes in the parameters affect changes in inequality. Formally, I 
define � top 1% as the added top 1% wealth share when the economy moves from 1981 to 2014 
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Table 4
Sensitivity analysis.

μ 0.08 0.09 0.10 0.11 0.12 0.13 0.14

� top 1% share 1.18% 2.68% 6.4% 12.79% 19.51% 10.41% 3.26%

ρ 0.013 0.014 0.015 0.016 0.017 0.018 0.019

� top 1% share 15.14% 13.92% 12.79% 11.66% 10.72% 9.91% 9.22%

δ 0.024 0.0246 0.025 0.026 0.027 0.028 0.029

� top 1% share 13.49% 12.79% 12.35% 11.23% 10.37% 9.67% 8.93%

α −0.40 −0.39 −0.38 −0.37 −0.36 −0.35 −0.34

� top 1% share 12.79% 12.92% 12.7% 12.4% 11.76% 10.95% 9.64%

γ0 0.0008 0.001 0.0012 0.0014 0.0016 0.0018 0.002

� top 1% share 8.78% 9.69% 10.46% 11.15% 11.73% 12.27% 12.79%

σ̃ 0.20 0.21 0.22 0.23 0.24 0.25 0.26

� top 1% share 13.25% 16.82% 18.53% 18.83% 17.54% 14.44% 12.79%

with the decline of information cost. The most important observation is that, for all parameter 
values, top 1% wealth share increases from 1981 to 2014. This is the essential message of the 
paper. Next, let’s discuss results of each parameter changes. First, the added inequality increases 
when the mean return μ increases, up to a certain level. This is because higher mean return im-
plies more wealth invested in the risky assets, which produces more demand for information, and 
amplifies the scale dependence effect coming from endogenous information acquisition. How-
ever, when μ increases even further, this effect is dampened. This is because at higher level of 
mean return, agents have already taken on lots of portfolio risk, and the economy has already 
experienced high inequality. For example, when μ = 0.14, top 1% wealth share is already 92.14. 
Therefore, the added effect of endogenous information acquisition is smaller.

Second, when the rate of time preference, ρ, increases, the added inequality decreases. This 
is understandable, because a higher ρ implies less patience, thus reducing agents’ incentive to 
save, invest and acquire information.

Next, an increase in the birth and death rate δ is similar to an increase in ρ, since they both 
increase the effective discount rate, thus dampening the amplification effect on inequality.

Further, let’s turn to risk aversion. As argued in the calibration section, there are restrictions on 
how high risk aversion can go. However, one can still study sensitivity within certain range. As 
the Table 4 shows, higher risk aversion results in more added inequality. Endogenous information 
acquisition amplifies inequality more when agents have higher risk aversion. In other words, 
information acquisition leads more risk averse agents to be more confident, which leads them to 
take on more risk, thus generating more inequality.

I proceed by discussing the effects of γ0. As one can see, an increase of initial uncertainty im-
plies larger inequality increases. This comes directly from endogenous information acquisition. 
Higher initial uncertainty leads to higher demand of information, which amplifies inequality.

Last but not least, one needs to understand the volatility parameter. Since (1 − λ) and σ al-
ways show up together, the only volatility that matters is σ̃ . Thus it suffices to experiment around 
changes in σ̃ . As one can see, the added inequality responds non-monotonically to an increase 
in σ̃ . This could be surprising to some readers. This can be understood with the following two 
opposing forces: At the beginning, increases in volatility reduces agents exposure to risky port-
folios. Therefore, endogenous information has a bigger role in building investors’ confidence 
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in risk taking. However, when volatility increases even further, the investment environment is 
so volatile that learning about the mean return is a much less attractive business, therefore the 
amplification effect of endogenous information acquisition is dampened.

9. Related literature

As discussed earlier, this paper is a direct descendent of work by Arrow (1987), Benhabib 
et al. (2016), and Turmuhambetova (2005). However, it can also be viewed as part of a larger 
literature that incorporates endogenous information into macroeconomics and finance. This liter-
ature is summarized by Veldkamp (2011). However, there are a couple of important differences 
between this recent literature and this paper. First, most of this literature focuses on either as-
set pricing or portfolio choice. Asset pricing is not an issue here, since projects are private and 
returns are (implicitly) generated by linear technologies. On the other hand, portfolio choice is
important here, but rather than being an end in itself, I use heterogeneous portfolio choice as an 
input to the study of inequality. A second important difference is that this literature focuses on 
either rational inattention or noisy rational expectations equilibria. In addition to the previously 
discussed work of Kacperczyk et al. (2018), work by Van Nieuwerburgh and Veldkamp (2010)
and Batchuluun et al. (2017) shows that rational inattention has interesting implications for both 
asset pricing and portfolio choice, generally in the direction of discouraging risky investment and 
diversification, and increasing risk premia. However, the traditional rational attention approach 
with fixed information capacity is perhaps not a great fit to financial markets. Rather than im-
pose exogenous capacity constraints on agents, this paper views causality as going in the other 
direction. Here wealth determines an agents ability to pay for information processing. Besides 
being more plausible, viewing information as costly makes it easier to quantify. For example, 
Luo (2016) finds that capacity constraints must be implausibly tight before rational inattention 
begins to exert significant effects on portfolio choice.

Probably the most common approach to incorporating endogenous information into macroe-
conomics and finance is to follow Grossman and Stiglitz (1980) and study a noisy rational 
expectations environment. In fact, the extension by Verrecchia (1982) is quite similar to this 
paper, since he allows agents to buy more precise return signals. However, these models are typ-
ically static, and so are ill-suited to a quantitative analysis of inequality trends. They are static 
for a good reason. In these models, agents invest in a common asset, and information is private. 
The focus of the analysis in then on a difficult signal extraction problem from endogenously 
determined prices. Dynamic versions of these models are notoriously difficult to solve (Wang, 
1993). This paper sidesteps this problem entirely, by assuming investment projects are linear and 
agent specific. Signal extraction takes place, but it only influences agent specific decisions, not 
market-clearing prices.20

Further, this paper is related to recent work on ‘financial literacy’ and asset market partici-
pation.21 However, this literature focuses more on the left-tail of the distribution, as opposed to 
top wealth shares. My paper shows why endogenous information leads the rich to get richer. In 
contrast, the financial literacy literature helps explain why the poor stay poor.

20 Ziegler (2012) reviews a closely related, but distinct, literature on ‘heterogeneous beliefs’ based on the assumption 
that agents have different priors. This literature might have interesting implications for inequality, but it begs the question 
of why agents have different priors.
21 Examples include Lusardi et al. (2017), Vissing-Jorgensen (2003), Van Rooij et al. (2011), and Luo et al. (2017).
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Finally, this paper is also related to Kasa and Lei (2018), who assume investors form robust 
portfolios in response to an increasingly ambiguous financial environment since the 1980s. They 
show robust portfolios also produce scale-dependent wealth dynamics. In reality, it is likely the 
case that both Knightian uncertainty has increased, while at the same time, information cost 
have declined. Household portfolio choices likely reflect a combination of both forces. In fact, 
Luo (2016) argues that both frictions are needed to explain observed portfolio behavior quan-
titatively. However, this paper differs from Kasa and Lei (2018) in important ways. The key 
mechanism here is through the second moment of beliefs (by building confidence), while Kasa 
and Lei (2018) works through the first moment (optimism/pessimism). By doing this, the in-
formation approach is consistent with other evidence we observe in the financial markets, and 
not just observed increase in inequality.22 First, lower information costs stimulates the demand 
for information, which then leads to increased asset price ‘informativeness’. Bai et al. (2016)
show that price informativeness has indeed increased in recent decades, with the increase being 
stronger among stocks with greater institutional ownership. Second, with endogenous asset re-
turns, the information mechanism in this paper would predict a decreased equity premium, since 
investment becomes less risky. Lettau et al. (2008) and Jagannathan et al. (2001) provide evi-
dence in support of this. Finally, the information approach generates more inertia in portfolio 
behavior, which is consistent with evidence pointed out by Agnew et al. (2003) and Bilias et 
al. (2010). This is because with learning, new information take time to be reflected in policies. 
These are all features of the data that Kasa and Lei (2018) cannot generate.

10. Conclusion

Arguably the two dominant trends in the global economy in recent decades have been the 
explosive growth in information technology, which has reduced the cost of information, and 
the widening gap between rich and poor. This paper shows why these trends might be related. 
Perhaps surprisingly, the model here suggests that when individuals can buy information, reduced 
information costs can increase inequality. Increased access to information makes investment less 
risky for everyone, which encourages everyone to take greater risks, which encourages growth. 
However, it encourages wealthier individuals relatively more, and this exacerbates inequality. As 
Arrow (1987) surmised long ago, information naturally lends itself to increasing returns, and 
when increasing returns are combined with idiosyncratic shocks, wealth inequality emerges.

Some have argued that inequality isn’t necessarily a bad thing. What about in my model? 
Here inequality emerges from a Pareto improving decrease in the cost of information. Since 
investment projects are idiosyncratic, there is no sense in which the rich are benefiting at the 
expense of the poor. If you want to make a case against inequality here, you must lay blame on 
the idiosyncratic nature of investment. The right way to address inequality in my model is not 
by taxing information, but by encouraging risk-sharing and the pooling of investment projects. 
Greenwood and Jovanovic (1990) develop a model in which there are fixed costs of risk sharing. 
Their model generates a Kuznets Curve in the distribution of wealth. At low levels of wealth, 
idiosyncratic shocks dominate, and inequality increases as the economy develops. Once it be-
comes economical to pay the fixed cost, however, risk-sharing emerges and inequality decreases. 
A similar dynamic would likely emerge here as well, if households were allowed to pool risks. 
However, since my model features finite lifetimes and no secular growth in per capita initial 

22 I thank an anonymous referee for clarifying the differences between this paper and Kasa and Lei (2018).
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wealth, a fixed cost to risk sharing could actually exacerbate inequality, since only the wealthy 
would find it advantageous to pool risks.23

There are (at least) two important avenues for future work. First, this paper has focused on 
stationary distributions. However, recent work by Gabaix et al. (2016) suggests that the real chal-
lenge is to understand transition dynamics. Why has inequality grown so rapidly? Second, one 
might argue that the 1% get too much attention. Perhaps more important are the bottom 50%, 
who for a variety of reasons that are outside my model, do not participate in financial markets 
at all. It would be interesting to combine endogenous participation with both endogenous infor-
mation and endogenously determined prices. It seems possible that encouraging more market 
participation, as is typically done in the ‘financial literacy’ literature, could actually backfire 
when information is endogenous, since it encourages entry by relatively uninformed investors, 
who in equilibrium end up losing money on average to the informed investors.

Appendix A. Value function with log utility

When α = θ = 0, the HJB equation becomes

βV = max
c,π

[
log (c) + [rw + π(μ̂ − r)w − c]Vw + 1

2
Vwwπ2σ̃ 2w2 + 1

2

γ 2

σ̃ 2 Vμ̂μ̂ − γ 2

σ̃ 2 Vγ

]
(A.35)

With log utility, we know c = βw and π = (μ̂−r)/σ̃ 2 as in the Merton consumption portfolio 
choice problem. Comparing the above HJB equation with the HJB with general risk aversion 
coefficient α, the term Vwμ̂ is omitted, because the changes in estimate μ̂ doesn’t affect a log 
agent’s portfolio decision, thus has zero effect on his marginal utility of wealth. If we assume 
β = r ,24 we can guess the following wealth-separable functional form for the value function

V 00 = A log (w) + g0(μ̂, γ ) + K (A.36)

Substituting this guess into the original HJB equation (A.35), we find that A = 1/β , K =
log (β)/β , and that g0(μ̂, γ ) solves the following 2D PDE

g0 = 1

2β2

(μ̂ − r)2

σ̃ 2 + γ 2

βσ̃ 2

(
1

2
g0

μ̂μ̂
− g0

γ

)
(A.37)

Let’s further guess that

g0(μ̂, γ ) = 1

2β2

(μ̂ − r)2

σ̃ 2 + g̃0(μ̂, γ ) (A.38)

This implies that g̃ satisfies the PDE

g̃0
γ = 1

2
g̃0

μμ + 1

2β2σ̃ 2 − βσ̃ 2

γ 2 g̃0 (A.39)

The boundary condition requires that g̃0(μ̂, 0) = 0, because the value function converges to 
its no-learning counterpart as long as learning finishes (i.e.: γ = 0). We can eliminate the last 
term using the change of variables

23 Favilukis (2013) shows that a fixed cost not only helps explain trends in inequality and market participation, it also 
helps explain asset price dynamics.
24 This assumption is used throughout the rest of the paper.
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g̃0 = eβσ̃ 2/γ w(μ̂, γ ) (A.40)

which gives us the following heat equation for w

wγ = 1

2
wμ̂μ̂ + 1

2β2σ̃ 2 e−βσ̃ 2/γ (A.41)

The above equation resembles a heat equation with a source term, and has the following 
solution

w(μ̂, γ ) = 1

2β2σ̃ 2

γ∫
0

∞∫
−∞

1√
2π(γ − s)

exp

(−(μ̂ − y)2

2(γ − s)

)
e−βσ̃ 2/sdyds

= 1

2β2σ̃ 2

γ∫
0

e−βσ̃ 2/s

[
1√

2π(γ − s)
exp

(−(μ̂ − y)2

2(γ − s)

)
dy

]
ds

= 1

2β2σ̃ 2

γ∫
0

e−βσ̃ 2/sds (A.42)

Unwinding the change of variables gives us

g0(μ̂, γ ) = 1

2β2

(μ̂ − r)2

σ̃ 2 + eβσ̃ 2/γ

⎛
⎝ 1

2β2σ̃ 2

γ∫
0

e−βσ̃ 2/sds

⎞
⎠ (A.43)

Finally, the value function follows

V 00(w, μ̂, γ ) = 1

β
log (w)+ log (β)

β
+ 1

2β2σ̃ 2

⎡
⎣(μ̂ − r)2 + eβσ̃ 2/γ

γ∫
0

e−βσ̃ 2/sds

⎤
⎦ (A.44)

The last term can be expressed in terms of the exponential integral function, i.e.:

eβσ̃ 2/γ

γ∫
0

e−βσ̃ 2/sds = βσ̃ 2eβσ̃ 2/γ Ei(−βσ̃ 2/γ ) + γ (A.45)

where the exponential integral function is defined as

Ei(−βσ̃ 2/γ ) = −
∞∫

βσ̃ 2/γ

e−s

s
ds (A.46)

By exploiting the relationship between exponential integral equation and incomplete gamma 
function, Ei(−βσ̃ 2/γ ) = −(0, βσ̃ 2/γ ), we could be ready for further policy function approx-
imation.

Appendix B. Perturbation approximation

Proof. Let’s posit the following value function, consisting of a first order expansion in θ around 
θ = 0.
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V (w, μ̂, γ ) = 1

β

[
[weg(μ̂,γ )]α − 1

α
+ θ(

[wef (μ̂,γ )]α+1 − 1

α + 1
+ C)

]
(B.47)

Further, let’s do a first order expansion of the solution of g(μ̂, γ ) and f (μ̂, γ ) around α = 0,25

i.e.:

g = g0 + αg1 + O(α2) (B.48)

f = f 0 + αf 1 + O(α2) (B.49)

Next, substitute this functional form into the policy functions. To an O(α, θ ) approximation, 
one gets the approximate policy functions

c∗ ≈ βw[1 − α(g0 − logβ) − θwef 0 ] (B.50)

π∗ ≈ 1

σ̃ 2 [(μ̂ − r) + α(g0
μγ + (μ̂ − r)) + θwef 0

(μ̂ − r + f 0
μγ )] (B.51)

κ∗ ≈ θγw(g0
μμ − 2g0

γ ) (B.52)

As it turns out, we do not need to fully solve functions g(μ̂, γ ) and f (μ̂, γ ) to get the policy 
functions. All we need to solve are g0 and f 0. Note that

lim
α→0,θ→0

V (w, μ̂, γ ) = 1

β
(logw + g0(μ̂, γ )) (B.53)

which is the same g0(μ̂, γ ) in eq. (A.43).
One can further approximate the solution:

g0 = logβ + 1

2βσ̃ 2 [(μ̂ − r)2 + γ − βσ̃ 2eβσ̃ 2/γ (0, βσ̃ 2/γ )]

≈ logβ + 1

2βσ̃ 2 [(μ̂ − r)2 + γ 2

βσ̃ 2 ] (B.54)

The approximation takes a second order Taylor expansion of g0 around γ = 0.
Next, let’s solve for the f 0(μ̂, γ ) term using perturbation. To do this, we first plug in policy 

functions (B.50), (B.51), (B.52) into the HJB equation, and get

βV = V
α

α−1
w − 1

α
+ Vw[rw − (μ̂ − r)w

Vw(μ̂ − r) + Vwμγ

Vwwwσ̃ 2 − V
1

α−1
w − θ

2
(
Vμμ − 2Vγ

Vw

γ )2]

+ 1

2
Vwwσ̃ 2

(
Vw(μ̂ − r) + Vwμγ

Vwwσ̃ 2

)2

+ (
1

2
Vμμ − Vγ )γ 2(

1

σ̃ 2 + 2θ
Vμμ − 2Vγ

Vw

)

− Vwμγ (
Vw(μ̂ − r) + Vwμγ

Vwwσ̃ 2 ) (B.55)

Note that eq. (B.47) can be rewritten into

V = V 0 + θV 1 (B.56)

where V 0 denotes the solution when θ = 0 and V 1 is the value function’s derivative w.r.t. θ when 
θ = 0. I take derivative of eq. (B.55) w.r.t. θ , and evaluate it at θ = 0. After some algebra, we get

25 Similar perturbation techniques are used in robust portfolio problems for a CRRA agent in Trojani and Vanini (2002).



X. Lei / Journal of Economic Theory 184 (2019) 104937 27
βV 1 = wV 1
w

(
(μ̂ − r)2

(1 − α)σ̃ 2 + αgμγ (μ̂ − r)

σ̃ 2(1 − α)
− (

1

β
)

1
α−1 e

α
α−1 g

)

+ w2V 1
ww

(
(μ̂ − r)2

2σ̃ 2(1 − α)2 + γ 2α2g2
μ

2σ̃ 2(1 − α)2 + γ (μ̂ − r)αgμ

σ̃ 2(1 − α)2

)

+ wV 1
wμ

(
γ 2αgμ

σ̃ 2(1 − α)
+ γ (μ̂ − r)

σ̃ 2(1 − α)

)
+ V 1

μμ

γ 2

2σ̃ 2

− V 1
γ

γ 2

σ̃ 2 + 1

2β
eαg
(
(gμμ + αg2

μ − 2gγ )γ
)2

wα+1 (B.57)

Note that the non-homogeneous term is proportional to wα+1. Therefore, the previous conjecture 
of the functional form on V 1 is confirmed. Evaluating the above at α = 0 and simplifying, we 
get

β[wef 0 + C − 1] = wef 0
(

(μ̂ − r)2

σ̃ 2 − β

)
+ wf 0

μef 0 γ (μ̂ − r)

σ̃ 2

+ γ 2

σ̃ 2

(
1

2
ef 0

(f 0
μμ + (f 0

μ)2) − f 0
γ ef 0
)

w + γ 2

2
w
(
g0

μμ − 2g0
γ

)2
(B.58)

By matching the constant term and the wef 0
terms, we get

C = 1 (B.59)

and a PDE that f 0(μ̂, γ ) needs to satisfy

2βσ̃ 2 = (μ̂ − r)2 + (μ̂ − r)γf 0
μ + γ 2

2

[
f 0

μμ + (f 0
μ)2 − 2f 0

γ + σ̃ 2(g0
μμ − 2g0

γ )2e−f 0
]
(B.60)

To an O(γ 2) approximation, we can get

f 0(μ̂, γ ) = 2βσ̃ 2

γ
log (μ̂ − r) − (μ̂ − r)2

2γ
� (B.61)

Appendix C. Proof of Lemma 5.1

Proof. Combining policy functions and individual wealth dynamics (3.14), one can write down 
each agents’ perceived law of motion for wealth as

dw = μ̂(w)wdt + σ(w)wd̂B (C.62)

Note that this is the agent’s perceived law of motion of his wealth. To study wealth distribu-
tion, it is useful to relate agents’ perceived law of motion to actual law of motion using, again, 
the Girsanov theorem. Recall that d̂B = dB − (μ̂−μ)

σ̃
dt . Therefore,

μ(w) = a(μ̂, γ ) + θwb(μ̂, γ ) (C.63)

σ(w) = c(μ̂, γ ) + θwd(μ̂, γ ) (C.64)

s.t.:
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a = (μ − r)

σ̃ 2

[
(1 + α)(μ̂ − r) + α

(μ̂ − r)γ

βσ̃ 2

]
+ α

2σ̃ 2

[
(μ̂ − r)2 + γ 2

βσ̃ 2

]
(C.65)

b = exp (f 0(μ̂, γ ))(r + (μ̂ − r)

σ̃ 2 ((μ̂ − r) + f 0
μ̂
γ )) (C.66)

c = 1

σ̃

[
(1 + α)(μ̂ − r) + α

(μ̂ − r)γ

βσ̃ 2

]
(C.67)

d̂ = exp (f 0(μ̂, γ )

σ̃
(μ̂ − r + f 0

μ̂
γ ) (C.68)

where f 0(μ̂, γ ) = 2βσ̃ 2

γ
log (μ̂ − r) − (μ̂−r)2

2γ
. �

Appendix D. Proof of Proposition 2

Proof. Let x = logw. Applying Ito’s lemma, one can then write the log wealth dynamics as

dx = [a + θbex − 1

2
(c + θd̂ex)2]dt + (c + θd̂ex)dB (D.69)

Dropping the second order term of θ , we can simplify the law of motion to

dx = [(a − 1

2
c2) + θex(b − cd̂)]dt + [c + θd̂ex]dB (D.70)

Therefore, the system can be written as⎡
⎣ dx

dμ̂

dγ

⎤
⎦=
⎡
⎢⎣

a − 1
2c2 + θ(b − cd̂)ex

γ (μ−μ̂)

β2σ̃ 2 [β2 + 2θex]
−γ 2( 1

σ̃ 2 + 2θex

β2σ̃ 2 )

⎤
⎥⎦dt +

⎡
⎢⎣ c + θd̂ex 0 0

γ
σ̃

√
2θexγ
βσ̃

0
0 0 0

⎤
⎥⎦
⎡
⎣ dB

dBy

0

⎤
⎦ (D.71)

The above state dynamics can be written in the matrix form

dX = G(X)dt + �(X) ¯dB (D.72)

The stationary KFP equation is thus written

0 = −
3∑

i=1

∂

∂Xi

[Gi(X)f ]+ 1

2

3∑
i=1

3∑
j=1

∂2

∂Xi∂Xj

[(
σ(X)σT (X)

)
i,j

f

]
− δf + δζ(X −X0)

(D.73)

where X = [x, μ̂, γ ]T represents the vector of the state variables, X0 = [x0, μ0, γ0]T represents 
initial endowment and beliefs at the mass point, and that ζ(.) represents the Dirac delta func-
tion. �
Appendix E. Analytical approximation

The time-scale separation approach is closely related to the ‘mean ODE’ method pioneered 
by Marcet and Sargent (1989) in the macroeconomic learning literature. Although eq. (5.31)
is linear, the coefficients are complicated functions of the state, which rules out a transform 
function approach. The key to making analytical headway here is to notice that the bottom two 
equations in (system), describing the evolution of beliefs, are scaled by the conditional variance, 
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γ . Moreover, we know γ is monotonically decreasing, so that if γ0 is small, γ remains small. 
This means that we can use time-scale separation methods to effectively decouple the evolution of 
wealth from the evolution of beliefs. Since x is ‘fast’ and (μ̂, γ ) are ‘slow’, we first characterize 
the x dynamics while keeping beliefs fixed. Next, we use the implied stationary distribution of 
x (which depends on (μ̂, γ )) to average over the wealth dependence in the equations describing 
beliefs. Finally, we can substitute the resulting stationary distribution of beliefs back into the 
conditional distribution for x to get the stationary marginal distribution of wealth.26

In other words, remember the solution of the (steady state) KFP equation gives us the sta-
tionary joint distribution of wealth and beliefs. Our averaging solution strategy is based on 
decomposing this joint distribution into the product of a conditional and a marginal,

f (x, μ̂, γ ) = f1(x|μ̂, γ )f2(μ̂, γ )

The conditional density f1 is described by a nonlinear ODE, which can be solved using an O(θ)

perturbation approximation. In general, the marginal distribution of beliefs would be difficult to 
handle, since beliefs interact with wealth. However, when beliefs are relatively ‘slow’, we can use 
averaging to obtain a simpler 2-dimensional PDE for (μ̂, γ ) which can again be solved relatively 
easily using an O(θ) perturbation approximation.

Yet another way of describing this solution strategy can be seen by looking directly at the KFP 
equation in (5.31). Notice that when γ = 0 all terms involving partials of μ̂ and γ disappear. 
Hence, to an O(γ ) approximation, we can view μ̂ and γ as constants. Hence, we can describe 
our time-scale separation strategy as an O(γ ) perturbation approximation,

Proposition 4. To an O(γ, θ) approximation, the stationary distribution of x(> 0) is

f1(x|μ̂, γ ) = A0(μ̂, γ )eφ(μ̂,γ )x + θA1(μ̂, γ )e[1+φ(μ̂,γ )]x (E.74)

where the normalizing constants (A0, A1) are chosen to maintain continuity at x = 0 and ensure 
adding up, 

∫
f1 = 1. The exponent φ(μ̂, γ ) is the negative root of the quadratic 1

2c2φ2 − âφ −
δ = 0, where â ≡ a − 1

2c2.

Proof. We can write f1(x|μ̂, γ ) into

f1(x|μ̂, γ ) = f 0(x|μ̂, γ ) + θf 1(x|μ̂, γ ) (E.75)

where f 0(x|μ̂, γ ) solves the following quadratic function

δf 0 = −âf 0
x + 1

2
c2f 0

xx + δζ(x0) (E.76)

where ζ(x0) is the Dirac delta function at the mass point x0 where x0 = 0. Therefore, the solution 
becomes

f 0(x|μ̂, γ ) =
{

A0e
φ1x; x > 0

Ã0e
φ2x; x < 0

where coefficients A0 and Ã0 are determined by integrating the distribution to one, and the 
continuity condition at x0 = 0.

26 Pavliotis and Stuart (2008) provide a good textbook description of averaging and time-scale separation methods.
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Next, combining eq. (5.31) and the solution of f 0(x|μ̂, γ ), we know that the PDE for f 1 is

δf 1 = −âf 1
x + 1

2
c2f 1

xx + ex
[
(cd̂ − b̂)f 0 + (2cd̂ − b̂)f 0

x + cd̂f 0
xx

]
+ex(φ+1)

[
(cd̂ − b̂) + φ(2cd̂ − b̂) + φ(φ − 1)cd̂

]
+ δζ(0) (E.77)

where â ≡ a − 1
2c2 and b̂ ≡ b − cd̂ . The homogeneous part of the solution is the same as for f 0. 

The particular solution is A1e
(φ+1)x where A1 must solve

δA1 = −â(φ + 1)A1 + 1

2
c2(φ + 1)φA1 + A0

[
(cd̂ − b̂) + φ(2cd̂ − b̂) + φ(φ − 1)cd̂

]
(E.78)

This gives

A1 =
A0

[
(cd̂ − b̂) + φ(2cd̂ − b̂) + φ(φ − 1)cd̂

]
δ + â(φ + 1) − 1

2c2(φ + 1)φ
� (E.79)

Several points are worth noting here. First, since we are only interested in top wealth shares, 
this result only characterizes the distribution for x > 0. However, a completely analogous and 
symmetric result applies for x < 0. Second, remember that (μ̂, γ ) are being treated as fixed 
parameters. The notation here reminds us that the Pareto exponents and normalizing constants 
depend on these slowly varying parameters. To fully characterize the distribution over long time-
scales, we need the distribution of beliefs. Third, notice that when learning is exogenous (θ = 0) 
the distribution is exactly Pareto, with an exponent that solves the same sort of quadratic that ap-
plies in the geometric Brownian motion case. Still, this exponent depends on (μ̂, γ ) since beliefs 
influence the portfolio allocation, which influences the drift and volatility of wealth. Finally, and 
most importantly, notice that when learning is endogenous (θ > 0), the distribution of wealth is 
only approximately Pareto, with an extra component that dies out more slowly. Asymptotically, 
for large x, this piece will dominate top wealth shares, and we obtain

Corollary E.1. To an O(γ, θ) approximation, endogenous information increases top wealth 
shares.

Proof. This follows simply from the fact that |φ + 1| < |φ|. �
We can now turn to the distribution of beliefs. When doing this, it is convenient to define the 

following linear operator

L[h] =
(

3γ

σ̃ 2 − δ

)
h + γ

σ̃ 2 (μ̂ − μ)hμ̂ + γ 2

σ̃
hγ + 1

2

γ 2

σ̃ 2 hμ̂μ̂ (E.80)

To an engineer, this is a ‘diffusion operator’, with source and convection terms. This is useful 
for us, since learning and diffusion are inverses of each other. In particular, when θ = 0, the 
evolution of beliefs satisfies the PDE, ht = L[h], plus appropriate delta functions capturing the 
prior. Stationary beliefs are then the solution of L[h] = 0.
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Lemma E.2. When θ = 0 the stationary cross-sectional distribution of beliefs is

h(μ̂, γ ) ≡ NIG(μ̂, γ ) = 1√
2πσ̃γ 3

exp

[
− (μ̂ − μ)2

2γ
− δσ̃ 2

γ

]
(E.81)

Proof. Take derivatives and substitute into eq. (E.80). �
The stationary joint density of beliefs is the product of a normal distribution (i.e., a ‘heat 

kernel’), and an inverse gamma density. The notation NIG is used as a mnemonic for this. It 
is the product of two separate densities because when θ = 0, the conditional variance for an 
individual agent is deterministic, and evolves independently from the conditional mean μ̂. The 
stationary cross-sectional conditional variance reflects the balancing of individual learning with 
exponential lifetimes. In terms of γ , this generates an inverse-gamma density.

Of course, when θ = 0, wealth influences beliefs, so in principle we need to account for this. 
However, since wealth evolves on a faster time-scale, we can simply average out this dependence.

Proposition 5. To an O(γ, θ) approximation, the stationary cross-sectional distribution of be-
liefs is

f2(μ̂, γ ) = B0N
IG(μ̂, γ ) + θB1G(μ̂, γ ) (E.82)

where (B0, B1) are normalizing constants, and G(μ̂, γ ) is a function defined in eqn. (E.94) in 
the following proof.

Proof. The “fast” dynamics of x can be averaged out by

ψ(μ̂, γ ) ≡ Eex =
∞∫

0

ex
[
A0e

φx + θA1e
(φ+1)x
]
dx

= − 1

φ + 1
A0 − θA1

1

φ + 2
(E.83)

Since O(θ) term is of second order, we can approximate the above as

ψ(μ̂, γ ) ≈ −A0

φ + 1
(E.84)

Let q(μ̂, γ ) = f2(μ̂, γ ). Again, let’s look for a first order perturbation solution for (μ̂, γ ), 
i.e.:

q(μ̂, γ ) = q0 + θq1 (E.85)

where q1 solves

2

β2 ψL[q1] + 2

β2

[
(μ̂ − μ)

σ 2 ψμ̂ + γ 2

σ 2 ψγ

]
q0 = 0 (E.86)

This is equivalent to

L[g1] +
[
(μ̂ − μ)

σ 2

ψμ̂

ψ
+ γ 2

σ 2

ψγ

ψ

]
N(μ̂, γ ) = 0 (E.87)

which could be written into the following form:
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L[q1] + Q(μ̂, γ ) = 0 (E.88)

where Q(.) can be interpreted as a “source” term in a standard diffusion problem. Although this 
is an operator equation, we can exploit an analogy from the theory of ODEs. Suppose we have 
the non-homogeneous ODE

ut + Au = f (t), u(0) = u0 (E.89)

We know the solution is

u(t) = e−tAu0 +
t∫

0

e(s−t)Af (s)ds (E.90)

Now suppose we have the diffusion problem

ut (x, t) = L[u] + λ(x, t) (E.91)

where L[.] is some diffusion operator, and λ(.) is a source. It turns out, the solution is analogous 
to the ODE case

u(x, t) = L(t)u(x,0) +
t∫

0

L(t − s)λ(s)ds

=
∞∫

−∞
N(x − y, t)u0(y)dy +

t∫
0

∞∫
−∞

N(x − y, t − s)λ(y, s)dyds (E.92)

where in the standard diffusion problem

N(x, t) = 1

2
√

πkt
e

−x2
4kt (E.93)

is called the heat kernel, and u0 is the delta function at μ̂0, γ0. Therefore, the G(.) function 
defined in Proposition 5 given in abstract terms is

G(μ̂, γ ) =
∞∫

0

∞∫
0

N(μ̂ − y, γ − s)Q(y, s)ds � (E.94)

The process of averaging over x is reflected in the properties of the G(μ̂, γ ) function. If we 
let ψ(μ̂, γ ) = Eex , where expectations are computed with respect to the stationary conditional 
distribution derived in Proposition 3, then G depends on ψμ̂ and ψγ . These determine how 
changes in beliefs affect mean wealth.

Finally, by combining the conditional distribution of x derived in Proposition 4 with the 
marginal distribution for beliefs derived in Proposition 5, we get the following characterization 
of the marginal distribution of (log) wealth

Proposition 6. To an O(γ, θ) approximation, the stationary cross-sectional marginal distribu-
tion of (log) wealth is (for x > 0)
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�(x) =
γ0∫

0

∞∫
−∞

f1(x|μ̂, γ )f2(μ̂, γ )dμ̂dγ (E.95)

=
γ0∫

0

∞∫
−∞

{
A0B0e

φx · NIG(μ̂, γ )

+ θ
[
A0B1e

φx · G(μ̂, γ ) + A1B0e
(φ+1)x · NIG(μ̂, γ )

]}
dμ̂dγ

where for notational convenience the dependence of φ and (Ai, Bi) on (μ̂, γ ) has been sup-
pressed.

Proof. By direct substitution. �
As long as we confine our attention to top wealth shares, we can focus on the x coefficients 

in the integrand. They are nonlinear functions of (μ̂, γ ). Existence of a well defined distribution 
requires φ < −1. By inspection, the dominating term will be the last one. We can approximate 
this around (μ̂, γ ) = (μ∗, γ ∗), with the RHS being its common capacity learning counterpart.

(φ + 1)x ≈ φ0x + [1 + φμ̂(μ̂ − μ∗) + .5φμ̂μ̂(μ̂ − μ∗)2 + φγ (γ − γ ∗)]x (E.96)

Note that φ0 is the coefficient in an economy with common information capacity. Hence, to 
assess the impact of endogenous information on top wealth shares, we can focus on the term 
in brackets. It turns out that φμ̂μ̂ < 0, so that the bracket term is a concave function of μ̂, with 
a unique maximum. As x → ∞, this maximum point will dominate the value of the integral. 
Hence, for large x we can just focus on it. This can be formalized using ‘Laplace’s Method’. 
Applying Laplace’s Method yields,

Proposition 7. For large x, the (right) tail Pareto exponent with endogenous information, φL, is 
approximately

φL ≈ φ0 + (1 +
φ2

μ̂

2|φμ̂μ̂| ) ⇒ |φL| < |φ0|

Hence, endogenous information increase top wealth shares.

Proof. The integral is approximated using Laplace’ method, which is used to approximate the 
following functional form

b∫
a

h(s)eMf (s)ds ≈
√

2π

Mf ′′(s0)
h(s0)e

Mf (s0) (E.97)

as M → ∞, where f (s) < 0 is maximized at s0.
The dominant piece of the marginal density

γ0∫
0

∞∫
−∞

A1(μ̂, γ )b(μ̂, γ )e(φ+1)xdμ̂dγ (E.98)

can thus be approximated using this method. Using the approximation



34 X. Lei / Journal of Economic Theory 184 (2019) 104937
(φ + 1)x ≈ φ0x + [1 + φμ̂(μ̂ − μ∗) + .5φμ̂μ̂(μ̂ − μ∗)2 + φγ (γ − γ ∗)]x (E.99)

Since φγ < 0, we know that (μ̂, γ ) = (−φμ̂/φμ̂μ̂ + μ∗, γ ∗) maximizes the exponent. The expo-
nent evaluated at the maximum thus becomes

(φ + 1)x ≈ φ0x + (1 +
φ2

μ̂

2|φμ̂μ̂| )x (E.100)

Therefore,

φL ≈ φ0 + (1 +
φ2

μ̂

2|φμ̂μ̂| ) (E.101)

which implies that |φL| < |φ0|. �
Appendix F. Summary of Lipper TASS hedge fund dataset

Table 5
Lipper TASS.

Statistic N Mean St. Dev. Min Max

Year Month 741,993 2,005.405 6.212 1,977.100 2,015.100
incentive fee 741,993 15.506 7.573 0.000 35.000
management fee 741,993 0.537 1.114 0 8
monthly rate of return 741,993 0.865 6.206 −89.922 934.480
net asset value 741,993 9,163.227 160,497.000 0.861 6,003,175.000
lock up period 741,993 3.799 8.320 0 90
minimum investment size 741,683 1,500,857.000 8,086,231.000 0 100,000,000
high water mark 741,993 0.675 0.468 0 1
average leverage 712,410 63.061 203.639 0.000 2,000.000
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