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Appendix A. Proof of Proposition 3.1

After substituting the h policy function in eq. (3.6) into the HJB equation in eq. (3.5) we get

(ρ + δ)V (w) = max
c,α

{
c1−γ

1 − γ
+ [(r + α(µ − r))w − c]V ′(w) +

1

2
α2σ2w2V ′′(w)−

1

2
εα2σ2w2(V ′(w))2

}
(A.1)

Except for the last term multiplying ε, this is a standard Merton consumption/portfolio problem, with a well known
solution. Hence, this suggests a perturbation approximation around ε. To obtain this, we posit

V (w) ≈ V 0(w) + εV 1(w)

Our goal is to solve for V 0(w) and V 1(w). With this approximation, a first-order approximation of the c(w) policy
function is

c(w) = V
− 1

γ
w

≈ [V 0
w + εV 1

w ]
− 1

γ

≈
(
V 0

w

)− 1
γ − ε

1

γ

(
V 0

w

)− 1
γ −1

V 1
w (A.2)

≡ c0 + εc1

and a first-order approximation of the α(w) policy is

α(w) = −
(µ − r)

σ2

[
Vw

w(Vww − εV 2
w)

]

≈ −
(µ − r)

σ2

[
wV 0

w

w2V 0
ww

+ ε
wV 1

wV 0
ww − wV 0

w(V 1
ww − (V 0

w)2)

w2(V 0
ww)2

]
(A.3)

≡ α0 + εα1

Substituting these approximations into HJB equation in (A.1) gives us

(ρ + δ)[V
0

+ εV
1
] =

c1−γ
0

1 − γ
+ εc

−γ
0 c1 + (V

0
w + εV

1
w)[(r + (α0 + εα1)(µ − r))w − (c0 + εc1)] +

1

2
(α0 + εα1)

2
σ

2
w

2
[V

0
ww + εV

1
ww]

−
1

2
ε(α0 + εα1)

2
σ

2
w

2
(V

0
w + εV

1
w)

2

Matching terms of equal order and dropping terms of order O(ε2) gives us

ε0 : (ρ + δ)V 0 =
c
1−γ
0

1− γ
+ V 0

w[(r + α0(µ − r))w − c0] +
1

2
α2

0σ2w2V 0
ww

ε1 : (ρ + δ)V 1 = c−γ
0 c1 + V 1

w[(r + α0(µ − r))w − c0] + V 0
w [α1(µ − r)w − c1] + σ2w2[α0α1V 0

ww + α2
0V 1

ww] −
1

2
α2

0σ
2w2(V 0

w)2

Note this system is recursive. We can first solve the ε0 equation for V 0 , and then substitute this into the ε1 equation.

Solving for V 0 just gives the Merton solution. In particular, we conjecture V 0(w) = A
1−γ

w1−γ . Note, this implies

c0 = A−1/γw and α0 =
(µ−r)
γσ2 . After canceling the common w1−γ term we can solve for A. This produces the

expression for A0 stated in Proposition 3.1.

To solve the ε1 equation we conjecture V 1(w) = B
ε

wε, and try to solve for B and ε. From (A.26) and (A.27),

this guess implies c1 = −γ−1A−1/γ−1Bw2−γ and α1 = −
(

µ−r
σ2

) (
A2+(γ−1)B

Aγ2

)
w1−γ . Note, these now depend on

w. Substituting these into the ε1 equation, we find that if ε = 2(1− γ), we can cancel out the terms in w and solve

for B. Doing so produces the expression for A1 stated in Proposition 3.1. �
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Appendix B. Proof of Corollary 3.2

This follows immediately from the proof of Proposition 3.1. Here we fill in some of the details omitted in the

above proof. Substituting the expressions for V 0 and V 1 into the expression for α(w) in eq. (A.3) gives

α(w) ≈ α0 − ε

(
µ − r

σ2

) [
−γA0A1w−3γ − A0A1(1− 2γ)w−3γ + A3

0w−3γ

γ2A2
0w−2γ−1

]

= α0 − εα0

[
−γA1 − (1− 2γ)A1 + A2

0

γA0

]
w1−γ

One can readily verify this is the same expression as stated in Corollary 3.2. Next, substituting the expressions for
V 0 and V 1 into the expressions for c(w) in eq. (A.2) gives

c(w)

w
= A

−1/γ
0 − ε

1

γ

(
A

−1/γ−1
0 A1

)
w1−γ

This then implies the expression for s(w) = 1− [c(w)/w] stated in Corollary 3.2. �

Appendix C. Recursive Preferences I

The main text considers a traditional robust control problem with observable states where an agent conditions on
a given benchmark model, and then formulates policies that are robust to local unstructured perturbations around

this model. As noted by Hansen, Sargent, Turmuhambetova, and Williams (2006), continuous-time versions of this
problem are observationally equivalent to Duffie and Epstein’s (1992) Stochastic Differential Utility (SDU) model

of recursive preferences. Hence, risk aversion is not separately identified from ambiguity/uncertainty aversion.
This observational equivalence has sparked a more recent literature that attempts to distinguish risk aversion

from both ambiguity aversion and intertemporal substitution. Hansen and Sargent (2008, chpts. 18 and 19) note
that the key to separating risk aversion from ambiguity aversion is to introduce hidden state variables, which the

agent attempts to learn about. Early robust control methods were criticized because they abstracted from learning.
Ambiguity is then defined by distortions of the agent’s estimates of the hidden states.1

Hidden states can be used to represent a wide range of unobservables. For example, time invariant hidden states
can index alternative models. Here we assume the hidden state is an unobserved, potentially time-varying, mean

investment return. In principle, we could allow the agent to be uncertain about both the dynamics conditional on
a particular mean growth rate, as well as the mean itself. However, for our purposes it is sufficient to assume the

agent is only uncertain about the mean.2

Distorted beliefs about the hidden state can be interpreted from the perspective of the Klibanoff, Marinacci, and

Mukerji (2005) (KMM) model of smooth ambiguity aversion. In the KMM model an agent prefers act f to act g if
and only if

Eµφ(Eπu ◦ f) ≥ Eµφ(Eπu ◦ g)

where E is the expectation operator, π is a probability measure over outcomes conditional on a model, and µ is a

probability measure over models. Ambiguity aversion is characterized by the properties of the φ function, while risk
aversion is characterized by the properties of the u function. If φ is concave, the agent is ambiguity averse. KMM

refer to Eπ as ‘first-order beliefs’, while Eµ is referred to as ‘second-order beliefs’. Note that when φ is nonlinear,
the implicit compound lottery defined by selecting a model with unknown parameters cannot be reduced to a single

lottery over a ‘hypermodel’, as in Bayesian decision theory, so the distinction between models and parameters
becomes important. Also note that from the perspective of smooth ambiguity aversion, evil agents and entropy

penalized drift distortions are just a device used to produce a particular distortion in second-order beliefs about
continuation values, i.e., where φ(V ) ≈ − exp(−εV ).

The original KMM model was static. Klibanoff, Marinacci, and Mukerji (2009) extend it to a recursive, dy-
namic setting. However, their implicit aggregator is additive, so risk and intertemporal substitution cannot be

distinguished. In response, Hayashi and Miao (2011) propose a model of generalized smooth ambiguity aversion
by combining KMM with an Epstein-Zin aggregator. Unfortunately, as noted by Skiadas (2013), this model does

not extend to continuous-time with Brownian information structures. Intuitively, first-order uncertainty (risk) is
O(dt), whereas second-order uncertainty (ambiguity) is O(dt2), and so it evaporates in the continuous-time limit.

1This definition of ambiguity aversion is based on the axiomatization of Ghirardato and Marinacci (2002), which

defines ambiguity aversion as deviations from subjective expected utility. Epstein (1999) proposes an alternative
definition based on deviations from probabilistic sophistication.
2In the language of Hansen and Sargent (2008, chpt. 18), we activate the T 2-operator by setting θ2 < ∞, while
deactivating the T 1-operator by setting θ1 = ∞. This is a subtle distinction, since at the end-of-the-day they both

produce drift distortions. However, they do this in different ways.
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In response, Hansen and Sargent (2011) propose a trick to retain ambiguity aversion, even as the sampling interval

shrinks to zero. In particular, they show that if the robustness/ambiguity-aversion parameter is scaled by the sam-
pling interval, then ambiguity aversion will persist in the limit. Intuitively, even though second-order uncertainty

becomes smaller and smaller as the sampling interval shrinks, because the agent effectively becomes more ambiguity
averse at the same time, ambiguity continues to matter.

In what follows we outline a heuristic combination of the discrete-time generalized KMM preferences of Hayashi
and Miao (2011) and the continuous-time scaling trick of Hansen and Sargent (2011). As far as we know, there are

no formal decision-theoretic foundations for such a combination, at least not yet.
With recusive preferences, the agent’s problem becomes

Vt = max
c,α

min
h

Et

∫ ∞

t
f(cs, Vs)ds

where f(cs, Vs) is the (normalized) Duffie-Epstein aggregator,

f(c, V ) = ϕ(1− γ)V

[
log(c)−

1

1 − γ
log((1− γ)V )

]

and where for simplicity we’ve assumed the the elasticity of intertemporal substitution is unity. The effective rate

of time preference is ϕ = ρ + δ, and the coefficient of relative risk aversion is γ 6= 1.3 The budget constraint is the
same as before

dw = {[r + α(µ − r)]w − c + ασwh} dt + ασwdB

The HJB equation is

0 = max
c,α

min
h

{
f(c,V ) +

1

2ε
h2 + ([r + α(µ − r)]w − c + ασwh) V ′(w) + +

1

2
α2σ2w2V ′′(w)

}

Note that discounting is embodied in the properties of the aggregator. Also note that in contrast to Bayesian
learning models, where the drift is regarded as an unknown parameter and its current estimate becomes a hedgeable

state variable, here the drift is viewed as a control variable, which is selected by the agent to produce a robust
portfolio.

The first-order conditions for (α,h) are the same as before, while the first-order condition for c becomes:

c =
ϕ(1− γ)V

V ′(w)

If these are substituted into the HJB equation we get:

0 = f [c(V,V ′), V ] + (rw − c)V ′ −
1

2

(µ − r)2(V ′)2

[V ′′ − ε(V ′)2]σ2

Our goal is to compute the following first-order approximation

V (w) ≈ V 0(w) + εV 1(w)

By inspection, it is clear that when ε = 0 it is natural to guess

V 0(w) =
Â0

1− γ
w1−γ

Note that this implies c0 = ϕw and α0 = (µ − r)/γσ2. Substituting into the HJB equation and cancelling out the

common w1−γ term gives the following equation for Â0

0 = ϕ

[
log(ϕ)−

1

1 − γ
log(Â0)

]
+(r−ϕ)−

1

2

(µ − r)2

γσ2
⇒ Â0 = exp

{
(1− γ)

[
log(ϕ) +

r − ϕ

ϕ
−

1

2

(µ − r)2

ϕγσ2

]}

Next, matching the O(ε) terms in the HJB equation yields the following ODE for V 1(w)

0 = ϕ(1−γ)

{
V 1

[
log(c0) −

1

1 − γ
log((1 − γ)V 0)

]
+ V 0

(
c1

c0
−

1

1 − γ

V 1

V 0

)}
+(r−ϕ)wV 1

w−
1

2
α2

0σ2(wV 0
w)2+

1

2
σ2w2[2α0α1V 0

ww+α2
0V 1

ww]

where

3We could easily allow γ = 1 by slightly modifying the aggregator. However, this would be uninteresting, since
preferences would then collapse to additive form given that we’ve already assumed the elasticity of intertemporal

substitution is unity.
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c1 = ϕ(1− γ)
V 1V 0

w − V 0V 1
w

(V 0
w)2

α1 = −γα0
wV 1

wV 0
ww − wV 0

w(V 1
ww − (V 0

w)2)

w2(V 0
ww)2

Note that the expression for α1 is the same as before. Also as before, note that the system is recursive, with the
above solutions for (V 0, c0 , α0) becoming inputs into the V 1 ODE. If you stare at this ODE long enough, you will

see that a function of the following form will solve this equation

V 1(w) =
Â1

ε
wε

where as before ε = 2(1− γ). Substituting in this guess, cancelling the common wε terms, and then solving for Â1

gives

Â1 =
− 1

2
α2

0σ2Â0

−γϕ log(ϕ) + (1− γ)(r − ϕ) + ϕγ
2(γ−1)

− ϕ + α2
0σ2 [ 1

2
(γ2 − 1) + (γ − 1)2]

From here, the analysis proceeds exactly as in the main text. We just need to replace (A0, A1) with (Â0, Â1).The
approximate saving rate now becomes

s(w) = 1− ϕ + ε
ϕÂ1

2Â0

w1−γ

If γ > 1, then this is increasing in w as long as Â1 < 0, since Â0 > 0.

To examine the quantitative properties of the model with recursive preferences, we use the same parameter
values as those in Table 1, with three minor exceptions. First, since the model with recursive preferences seems to

be somewhat less sensitive to the robustness parameter, we increased ε from 0.045 to 0.45. Second, we increased
γ slightly from 1.31 to 1.5. Finally, we increased µ slightly, from 5.86% to 5.95%. These parameter values remain

consistent with available empirical estimates. Figure 1 displays the resulting portfolio shares and savings rates.
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Figure 1. Recursive Preferences

The portfolio shares are similar to those in Figure 2, though wealth dependence is somewhat weaker. The key
difference here is the saving rate. Now it is increasing in wealth. However, as in Figure 3, wealth dependence is very

weak.

Appendix D. Proof of Proposition 4.1

Substituting the policy functions into the budget constraint gives

dw = [(r + α(w)(µ − r))w − c(w)]dt + α(w)σwdB
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where α(w) and c(w) are the approximate policy functions given in Corollary 3.2. Collecting terms, individual

wealth dynamics can be described
dw

w
= a(w; ε)dt + b(w; ε)dB

where the drift coefficient is given by

a(w; ε) = r +
(µ − r)2

γσ2
− A

−1/γ
0 + ε

{
−γ2σ2α2

0[A
2
0 + (γ − 1)A1)] + γA1A

−1/γ
0

γ2A0

}
w1−γ (D.4)

≡ ā0 + εā1w1−γ

and the diffusion coefficient is given by

b(w; ε) = σα0 − ε

{
α0σγ

A2
0 + (γ − 1)A1

γ2A0

}
w1−γ (D.5)

≡ b0 + εb1w1−γ

In a standard random growth model, these coefficients would be constant. Hence, the wealth dependence here

reflects the ‘scale dependence’ of our model. Next, let x = log(w) ≡ g(w) denote log wealth. Ito’s lemma implies

dx = g′(w)dw +
1

2
w2b(w)2g′′(w)dt

=
dw

w
−

1

2

(
b0 + εb1w1−γ

)2
dt

Substituting e(1−γ)x = w1−γ into the right-hand side and dropping O(ε2) terms gives

dx = [ā0 −
1

2
b20 + ε(ā1 − b0b1)e(1−γ)x]dt + (b0 + εb1e(1−γ)x)dB

Finally, defining a0 ≡ ā0 − 1
2
b20 and a1 = ā1 − b0b1 gives the result stated in Proposition 4.1. �

Appendix E. Proof of Proposition 4.4

For convenience, we start by reproducing the KFP equation in (4.14)

∂f

∂t
= −

∂[(a0 + εa1e(1−γ)x)f ]

∂x
+

1

2

∂2[(b0 + εb1e(1−γ)x)2f ]

∂x2
− δf + δζ0

Evaluating the derivatives gives

∂f

∂t
= (−ax + b2x + bbxx)f + (2bbx − a)

∂f

∂x
+

1

2
b2

∂2f

∂x2
− δf + δζ0

where a(x) and b(x) are the drift and diffusion coefficients defined in equations (D.4) and (D.5) after the change of

variables w = ex. In general, these sorts of partial differential equations are not fun to solve. However, this PDE
is linear, which opens the door to transform methods. The first step is to evaluate the derivatives of the a(x) and

b(x) functions, and then drop the O(ε2) terms. Then we take the Laplace transform of both sides, with x as the
transform variable. When doing this we use the following facts

L{
∂f

∂t
} =

∂F (s)

∂t
L{

∂f

∂x
} = sF (s) L{

∂2f

∂x2
} = s2F (s) L{eβxf} = F (s − β) L{ζ0} = 1

where L{f(x)} ≡ F (t, s) ≡
∫ ∞
−∞ f(t, x)e−sxdx defines the (two-sided) Laplace transform. The first result follows

from interchanging differentiation and integration, while the second and third results follow from integration by

parts (using the boundary conditions f(−∞) = f(∞) = 0). The fourth result is called the ‘shift theorem’, and
follows from the change of variable s → s − β. The last result is more subtle. The fact that the Laplace transform

of a delta function is just equal to 1 uses results from the theory of generalized functions.4

Following these steps produces equation (4.15) in the text, which we repeat here for convenience

∂F

∂t
= Λ(s)F (t, s) + εΦ(s − β)F (t,s − β) + δ (E.6)

where β ≡ 1− γ and

Λ(s) =
1

2
b20s2 − a0s − δ

Φ(s) = b0b1s2 + (2b0b1β − a1)s + β(b0b1β − a1)

4Kaplan (1962) provides a good discussion of Laplace transform methods.
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To solve equation (E.6) we use the approximation F (t, s − β) ≈ F (t, s) − β ∂F
∂s

. This gives us

Ft = Λ(s)F (t, s) + εΦ(s − β) [F (t, s) − βFs] + δ (E.7)

where subscripts denote partial derivatives. Note that we are now back to solving a PDE. We solve this using a
standard guess-and-verify/separation-of-variables strategy. In particular, we posit a solution of the following form

F (t, s) = H(t)G(s) + F∞(s)

Loosely speaking, H(t) captures transition dynamics, G(s) captures initial and boundary conditions, and F∞(s)

captures the new stationary distribution. Here we focus on this last component. Plugging this guess into (E.7) gives

H ′G = Λ[HG] + εΦ[HG − βHG′] +
{
[Λ + εΦ]F∞ − εΦβF ′

∞ + δ
}

(E.8)

where for convenience we have suppressed function arguments. The key point to notice here is that the last term in
parentheses is independentof time, so we can solve it separately. Doing so gives us the robust stationarydistribution.

Another important observation here is that ε multiplies the derivative F ′
∞. This ‘singular perturbation’ term makes

conventional first-order perturbation approximation unreliable. To deal with this term we employ the change of

variables ŝ = s/ε. With this change of variable we can write the ODE in parentheses as follows

F ′
∞ =

1

β

(
ε +

Λ

Φ

)
F∞ +

δ

βΦ

We can eliminate the nonhomogeneous term’s dependence on ŝ by defining Q(ŝ) = Φ(ŝ − β)F∞(ŝ), which implies

F ′
∞ = Q′ − (Φ′/Φ)Q. This delivers the following ODE

Q′ =

(
ε + Λ + βΦ′

βΦ

)
Q +

δ

β

The general solution of this linear ODE is the sum of a particular solution to the nonhomogeneous equation and
the solution of the homogeneous equation. However, we can ignore the homogeneous solution, since we know that

a stationary distribution does not exist when δ = 0.5 Stated in terms of F∞ , the particular solution is

F∞(ŝ) =
−δ

ε + Λ(ŝ) + βΦ′(ŝ − β)

After expanding the denominator polynomial into partial fractions we obtain the result stated in Proposition 4.4.
To prove the correspondence principle stated in Corollary ?? we can just reverse the change of variables back to s.

Let (R1, R2) denote the two roots of F (ŝ), (φ1, φ2) denote the roots of Λ(s), and (r1, r2) denote the roots of Φ(s).
After substituting s/ε for ŝ and then multiplying numerator and denominator by ε2 we get

ε2

(s − εR1)(s − εR2)
=

−ε2δ

ε3 + (s − εφ1)(s − εφ2) + εβ[s − εr1 + s − εr2]

Taking limits we obtain limε→0(R1,R2) = (φ1, φ2), which is the stated correspondence principle. �

Appendix F. Proof of Proposition 5.1

This follows directly from the proof of Proposition ??. Having solved for the stationary distribution, F∞ , the
PDE in eq. (E.8) becomes

F̃t = [Λ(s) + εΦ(s − β)]F̃ − εβΦ(s − β)(G′/G)F̃

where F̃ ≡ HG. Assuming O(β) = O(ε), the last term can be dropped since it is second-order. �

Appendix G. Recursive Preferences II

To examine inequality dynamics with recursive preferences we just need to replace the expressions for (A0 ,A1)

in the main text with the expressions for (Â0 , Â1) derived in Appendix C, and then replace the expressions for
(a0, a1) stated in Proposition 4.1 with the following expressions for (â0, â1):

â0 = r − ϕ + γσ2α2
0 −

1

2
b20

â1 =
1
2
γ2Â1 − (σγα0)

2(Â2
0 + (γ − 1)Â1)

Â0γ2
− b0b1

We can then follow the exact same approximation strategy as outlined in the main text. Figure 2 displays the
resulting stationary distributions and convergence rates. We use the same parameter values as those in Table 1,

5Also note that since ŝ = s/ε, as ε → 0 we know ŝ → ∞. From the ‘initial value theorem’ we know lims→∞ F (s) = 0
since f(x) is bounded at the switch point.
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with the exceptions noted in Appendix C. In particular, we increase ε from 0.045 to 0.45, we increase γ slightly

from 1.31 to 1.5, and increase µ slightly, from 5.86% to 5.95%.

log(w)
3 3.5 4 4.5 5 5.5 6 6.5 7

0
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-0.04

-0.02

0
Convergence Rates

Figure 2. Recursive Preferences

Given the higher value of ε and the reinforcing effect of the saving rate, it is perhaps not too surprising that we
now see a greater increase in inequality. The top 1% wealth share increases from 13.1% to 39.1%. Although 39.1%

is very close to current estimates, 13.1% is somewhat smaller than its 1980 value. Finally, and most importantly, we
find that robust convergence rates are even higher than those reported in the main text. At the mean level of wealth,

the nonrobust convergence rate is 1.6%, close to its original value of 1.14%. However, now the robust convergence
rate becomes 6.4%, more than 200 basis points higher than before, and four times greater than its nonrobust value.

One concern with using a higher value of ε is that it induces an overly pessimistic drift distortion and implausibly
small detection error probability. However, we find that ε = 0.45 still produces maximal drift distortions around

1%, and detection error probabilities above 40%.
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